Skip to main content
Log in

In Situ Study of Hydrogen Accumulation in the E110 Zirconium Alloy during Gas-Phase Hydrogenation by the Methods of Thermal Desorption Spectroscopy and Synchrotron X-Ray Diffraction Analysis

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The method of thermal desorption spectroscopy (TDS) implemented on an automated Gas Reaction Controller LPB complex and the procedure for conducting experiments on the study of hydrogen accumulation using the TDS method are described. The use of the complex made it possible to perform experiments on TDS immediately after saturation with hydrogen without removing the samples from the vacuum environment. The operating temperatures of the complex were in the range from 20 to 1000°C. The heating rate was kept constant and could be set between 0.1°C/min and 6°C/min. The pressure range was from 6 × 10–8 to 1 × 10–5 Pa when performing thermal desorption spectroscopy and from 0.02 Pa to 5 × 103 Pa when the samples were saturated with hydrogen. For the E110 zirconium alloy, the temperature dependence of the sorption rate was determined. Using in situ X-ray diffraction on synchrotron radiation, it was shown that during gas-phase hydrogenation in the E110 zirconium alloy (Zr–1% Nb), δ-hydrides were formed throughout the entire bulk of the material. Under thermal action, the dissociation of hydrides occurred in the temperature range of 500–550°C. With a further increase in temperature, a thermally stimulated release of hydrogen occurred, accompanied by a phase transition of zirconium from the α to the β phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. T. Motta and L. Q. Chen, JOM 64, 1403 (2012). https://doi.org/10.1017/S1431927614010745

    Article  CAS  Google Scholar 

  2. E. B. Kashkarov, N. N. Nikitenkov, A. N. Sutygina, A.O. Bezmaternykh, V. N. Kudiiarov, M. S. Syrtanov, and T. S. Pryamushko, Appl. Surf. Sci. 432, 207 (2018). https://doi.org/10.1016/j.apsusc.2017.04.035

    Article  ADS  CAS  Google Scholar 

  3. A. M. Lider, N. S. Pushilina, V. N. Kudiiarov, and M. Kroening, Appl. Mech. Mater. 302, 92 (2013). https://doi.org/10.1088/1757-899X/135/1/012022

    Article  ADS  Google Scholar 

  4. G. A. McRae, C. E. Coleman, and B. W. Leitch, J. Nucl. Mater. 396, 130 (2010). https://doi.org/10.1016/j.jnucmat.2009.10.052

    Article  ADS  CAS  Google Scholar 

  5. F. Nagase and T. Fuketa, J. Nucl. Sci. Technol. 42, 58 (2005). https://doi.org/10.1016/S1875-5372(17)30152-2

    Article  CAS  Google Scholar 

  6. E. Lunarska, O. Chernyayeva, D. Lisovytskiy and R. Zachariasz, Mater. Sci. Eng., C 30, 181 (2010). https://doi.org/10.1016/j.msec.2009.09.016

    Article  CAS  Google Scholar 

  7. Y. Furuya, A. Takasaki, K. Mizuno, and T. Yoshiie, J. Alloys Compd. 446, 447 (2007). https://doi.org/10.1016/j.jallcom.2007.04.304

    Article  CAS  Google Scholar 

  8. V. N. Kudiiarov, E. B. Kashkarov, M. S. Syrtanov, and A. M. Lider, Int. J. Hydrogen Energy 42, 10604 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.036

    Article  CAS  Google Scholar 

  9. G. M. Pressouyre and I. M. Bernstein, Metall. Trans. A 12, 835 (1981). https://doi.org/10.1007/BF02648348

    Article  CAS  Google Scholar 

  10. L. M. Bernstein and G. M. Pressouyre, Hydrogen Degradation of Ferrous Alloys (Noyes, Park Ridge, 1985).

    Google Scholar 

  11. E. Tal-Gutelmacher, D. Eliezer, and E. Abramov, Mater. Sci. Eng., A 445–446, 625 (2007). https://doi.org/10.1016/j.msea.2006.09.089

    Article  CAS  Google Scholar 

  12. F. Von Zeppelin, M. Haluska, and M. Hirscher, Thermochim. Acta 404, 251 (2003). https://doi.org/10.1016/S0040-6031(03)00183-7

    Article  CAS  Google Scholar 

  13. T. Voskuilen, Y. Zheng, and T. Pourpoint, Int. J. Hydrogen Energy 35, 10387 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.169

    Article  CAS  Google Scholar 

  14. H. H. Cheng, X. X. Deng, and S. L. Li, Int. J. Hydrogen Energy 32, 3046 (2007). https://doi.org/10.1016/j.ijhydene.2007.01.010

    Article  CAS  Google Scholar 

  15. Y. Choi, J. W. Lee, Y. W. Lee, and S. I. Hong, J. Nucl. Mater. 256, 124 (1998). https://doi.org/10.1016/S0022-3115(98)00180-9

    Article  ADS  CAS  Google Scholar 

  16. W. Y. Choo and J. Y. Lee, Met. Trans. A 13A, 135 (1982). https://doi.org/10.2320/matertrans.L-M2010825

    Article  CAS  Google Scholar 

  17. T. Izumi and G. Itoh, Mater. Trans. 52, 130 (2011). https://doi.org/10.2320/matertrans.L-M2010825

    Article  CAS  Google Scholar 

  18. K. A. Terrani, M. Balooch, D. Wongsawaeng, S. Jaiyen, and D. R. Olander, J. Nucl. Mater. 397, 61 (2010). https://doi.org/10.1016/j.jnucmat.2009.12.008

    Article  ADS  CAS  Google Scholar 

  19. F. Nagase, J. Nucl. Mater. 415, 117 (2011). https://doi.org/10.1016/j.jnucmat.2011.05.048

    Article  ADS  CAS  Google Scholar 

  20. T. Allen, H. Burlet, and R. Nanstad, MRS Bull. 34, 20 (2009). https://doi.org/10.1557/mrs2009.8

    Article  CAS  Google Scholar 

  21. Y. Choi, J. W. Lee, Y. W. Lee, and S. I. Hong, J. Nucl. Mater. 256, 124 (1998). https://doi.org/10.1016/S0022-3115(98)00180-9

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

High-temperature synchrotron X-ray diffraction investigations were done at the Shared Research Center “Siberian Synchrotron and Terahertz Radiation Center” on the basis of Novosibirsk Free Electron Laser at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.

Funding

This research was funded by the Governmental Program, Grant no. FSWW-2023-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kruglyakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglyakov, M.A., Laptev, R.S., Syrtanov, M.S. et al. In Situ Study of Hydrogen Accumulation in the E110 Zirconium Alloy during Gas-Phase Hydrogenation by the Methods of Thermal Desorption Spectroscopy and Synchrotron X-Ray Diffraction Analysis. J. Surf. Investig. 17 (Suppl 1), S187–S193 (2023). https://doi.org/10.1134/S1027451023070273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070273

Keywords:

Navigation