Skip to main content
Log in

The Phase Transitions Behavior during Hydrogenation and Defect Structure Investigation in an E110 Zirconium Alloy with a Hydride Rim

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this work, we have investigated the defect structure of an E110 zirconium alloy after saturation with hydrogen by means of the layer-by-layer system analysis. A series of experiments were intended to create a hydride rim in zirconium alloy cladding tubes. To determine the distribution of a hydrogen gradient and the thickness of hydrides in zirconium alloy samples, a layer-by-layer positron spectroscopy system was developed. The results from the developed positron annihilation method are well consistent with the results from nanohardness indentation and glow discharge optical emission spectroscopy (GD-OES). We can draw a conclusion that the use of nickel-plating on the zirconium alloy surface increases the rate of hydrogen entering the surface, which produces a hydride rim with a thickness of about 150 µm on the outer surface of the E110 alloy. This work allowed us to develop a methodology for studying the defective structure of alloys in the field of nuclear energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.

REFERENCES

  1. T. Allen, H. Burlet, and R. Nanstad, MRS Bull. 34, 20 (2009). https://doi.org/10.1557/mrs2009.8

    Article  CAS  Google Scholar 

  2. F. Nagase, J. Nucl. Mater. 415, 117 (2011). https://doi.org/10.1016/j.jnucmat.2011.05.048

    Article  CAS  ADS  Google Scholar 

  3. R. S. Daum, in Hydrogen Effects on Material Behavior, and Corrosion Deformation Interactions, Ed. by N. R. Moody, A. W. Thompson, G. S. Was, and R. H. Jones (TMS, Moran, 2003). https://doi.org/10.1016/S0022-3115(03)00299-X

    Book  Google Scholar 

  4. A. T. Motta and L. Q. Chen, J. Miner., Met. Mater. Soc. 64, 1403 (2012). https://doi.org/10.1016/j.phpro.2016.11.058

    Article  CAS  Google Scholar 

  5. F. Nagase and T. Fuketa, J. Nucl. Sci. Technol. 42, 58 (2005). https://doi.org/10.1016/S1875-5372(17)30152-2

    Article  CAS  Google Scholar 

  6. F. Von Zeppelin, M. Haluska, and M. Hirscher, Thermochim. Acta 404, 251 (2003). https://doi.org/10.1016/S0040-6031(03)00183-7

    Article  CAS  Google Scholar 

  7. W. Y. Choo and J. Y. Lee, Met. Trans. A 13A, 135 (1982). https://doi.org/10.2320/matertrans.L-M2010825

    Article  CAS  Google Scholar 

  8. A. T. Motta and L. Q. Chen, JOM 64, 1403 (2012). https://doi.org/10.1017/S1431927614010745

    Article  CAS  Google Scholar 

  9. E. B. Kashkarov, N. N. Nikitenkov, A. N. Sutygina, M. S. Syrtanov, O. V. Vilkhivskaya, T. S. Pryamushko, V. N. Kudiiarov, and L. Volesky, Int. J. Hydrogen Ener-gy 308, 2 (2017). https://doi.org/10.1016/j.surfcoat.2016.07.111

    Article  CAS  Google Scholar 

  10. M. D. Navalikhina and O. V. Krylov, Russ. Chem. Rev. 67, 587 (1998). https://doi.org/10.1070/RC1998v067n07ABEH000413

    Article  ADS  Google Scholar 

  11. Y. Choi, J. W. Lee, Y. W. Lee, and S. I. Hong, J. Nucl. Mater. 256, 124 (1998). https://doi.org/10.1016/S0022-3115(98)00180-9

    Article  CAS  ADS  Google Scholar 

  12. T. Izumi and G. Itoh, Mater. Trans. 52, 130 (2011). https://doi.org/10.2320/matertrans.L-M2010825

    Article  CAS  Google Scholar 

  13. J. Bair, M. A. Zaeem, and M. Tonks, J. Nucl. Mater. 466, 12 (2015). https://doi.org/10.1016/j.jnucmat.2015.07.014

    Article  CAS  ADS  Google Scholar 

  14. H.K. D. H. Bhadeshia, ISIJ Int. 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430

    Article  CAS  Google Scholar 

  15. J. Dryzek, Appl. Phys. A 81, 1099 (2005). https://doi.org/10.1007/s00339-004-2966-6

    Article  CAS  ADS  Google Scholar 

  16. A. G. Ioltukhovsky, B. A. Kalin, and A. A. Shmakov, Hydrogen Embrittlement and Hydride Cracking of Zirconium Elements of Light Water Reactors (MEPhI, Moscow, 2001) [in Russian].

  17. G. P. Kobylyansky and A. E. Novoselov, Radiation Resistance of Zirconium and Alloys Based on It: Reference Materials for Reactor Materials Science (Dimitrovgrad, 1996) [in Russian].

  18. R. Laptev, A. Lider, Yu. Bordulev, V. Kudiiarov, and G. Garanin, J. Alloys Compd. 645, 193 (2015). https://doi.org/10.1016/j.jallcom.2014.12.257

    Article  CAS  Google Scholar 

  19. N. S. Pushilina, V. N. Kudiiarov, A. M. Lider, and A. D. Teresov, J. Alloys Compd. 645, 476 (2015). https://doi.org/10.1016/j.jallcom.2014.12.078

    Article  CAS  Google Scholar 

  20. Y. S. Bordulev, R. S. Laptev, V. N. Kudiyarov, and A. M. Lider, Adv. Mater. Res. 880, 93 (2014). https://doi.org/10.4028/AMR.880.93

    Article  Google Scholar 

  21. G. A. McRae, C. E. Coleman, and B. W. Leitch, J. Nucl. Mater. 396, 130 (2010). https://doi.org/10.1016/j.jnucmat.2009.10.052

    Article  CAS  ADS  Google Scholar 

  22. E. Lunarska, O. Chernyayeva, D. Lisovytskiy, and R. Zachariasz, Mater. Sci. Eng., C 30, 181 (2010). https://doi.org/10.1016/j.msec.2009.09.016

    Article  CAS  Google Scholar 

  23. Y. Furuya, A. Takasaki, K. Mizuno, and T. Yoshiie, J. Alloys Compd. 446, 447 (2007). https://doi.org/10.1016/j.jallcom.2007.04.304

    Article  CAS  Google Scholar 

  24. G. M. Pressouyre and I. M. Bernstein, Metall. Trans. A 12, 835 (1981). https://doi.org/10.1007/BF02648348

    Article  CAS  Google Scholar 

  25. L. M. Bernstein and G. M. Pressouyre, Hydrogen Degradation of Ferrous Alloys (Noyes, Park Ridge, 1985).

    Google Scholar 

  26. E. Tal-Gutelmacher, D. Eliezer, and E. Abramov, Mater. Sci. Eng., A 445–446, 625 (2007). https://doi.org/10.1016/j.msea.2006.09.089

    Article  CAS  Google Scholar 

  27. K. A. Terrani, M. Balooch, D. Wongsawaeng, S. Jaiyen, and D. R. Olander, J. Nucl. Mater. 397, 61 (2010). https://doi.org/10.1016/j.jnucmat.2009.12.00

    Article  CAS  ADS  Google Scholar 

  28. T. Voskuilen, Y. Zheng, and T. Pourpoint, Int. J. Hydrogen Energy 35, 10387 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.169

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

High-temperature synchrotron X-ray diffraction investigations were done at the Shared Research Center "Siberian Synchrotron and Terahertz Radiation Center" on the basis of Novosibirsk Free Electron Laser at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.

Funding

This research was funded by the Governmental Program, Grant no. FSWW-2023-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kruglyakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglyakov, M.A., Li, K., Bordulev, Y.S. et al. The Phase Transitions Behavior during Hydrogenation and Defect Structure Investigation in an E110 Zirconium Alloy with a Hydride Rim. J. Surf. Investig. 17 (Suppl 1), S180–S186 (2023). https://doi.org/10.1134/S1027451023070261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070261

Keywords:

Navigation