Skip to main content
Log in

Abstract

The concept of a new monochromator based on a plane VLS grating with an exponential dependence of the line frequency on the coordinate, in which the deflection angle is constant, and the slits, source, and radiation detector are fixed, is proposed. Wavelength scanning is carried out using a linear translation of the grating along its surface, while the diffracted radiation remains focused on the exit slit, and aberrations do not increase. The scheme of the device for use on a synchrotron source in the spectral range 125–4200 Å is calculated. The distance from the source to the grating is 28.55 m, the distance from the grating to the exit slit is 650 mm, the constant grazing angle of incidence onto the grating is 7°, and the constant deflection angle is 19.5°. The resolving power is 6000 with an exit slit width of 8 µm. The line frequency varies from ~1300 to ~35 mm–1. Several interchangeable gratings are expected to cover the full bandwidth. A similar approach turned out to be applicable to the design of a compact (in particular, shorter than one meter) high-resolution monochromator with equal distances from the entrance slit to the VLS grating and the VLS grating to the exit slit. Such a monochromator can be used, for example, in combination with a repetitively pulsed laser-plasma radiation source in the vacuum region of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. M. Biednov, G. Brenner, B. Dicke, H. Weigelt, B. Keitel, M. Rubhausen, and S. Dziarzhytski, J. Synchrotron Radiat. 26, 18 (2019). https://doi.org/10.1107/S160057751801576X

  2. S. A. Garakhin, I. G. Zabrodin, S. E. Zuev, I. A. Kas’kov, A. Ya. Lopatin, A. N. Nechay, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo, and M. V. Svechnikov, Quantum Electron. 47, 385 (2017). https://doi.org/10.1070/QEL16300

  3. M. C. Hettrick and J. H. Underwood, AIP Conf. Proc. 147, 237 (1986). https://doi.org/10.1063/1.35993

  4. M. C. Hettrick, J. H. Underwood, P. J. Batson, and M. J. Eckart, Appl. Opt. 27, 200 (1988). https://doi.org/10.1364/AO.27.000200

  5. J. H. Underwood, E. M. Gullikson, M. Koike, and S. Mrowka, Proc. SPIE 3150, 40 (1997). https://doi.org/10.1364/AO.27.000200

  6. H. Ohashi, Y. Senba, H. Kishimoto, T. Miura, E. Ishiguro, T. Takeuchi, M. Oura, K. Shirasawa, T. Tanaka, M. Takeuchi, K. Takeshita, Sh. Goto, S. Takahashi, H. Aoyagi, M. Sano, Y. Furukawa, T. Ohata, T. Matsushita, Y. Ishizawa, Sh. Taniguchi, Y. Asano, Y. Harada, T. Tokushima, K. Horiba, H. Kitamura, T. Ishikawa, and Sh. Shin, AIP Conf. Proc. 879, 523 (2007). https://doi.org/10.1063/1.2436113

  7. Y.-D. Chuang, X. Feng, P.-A. Glans-Suzuki, W. Yang, H. Padmorea, and J. Guoa, J. Synchrotron Radiat. 27, 695 (2020). https://doi.org/10.1107/S1600577520004440

  8. J. Dvorak, I. Jarrige, V. Bisogni, S. Coburn, and W. Leonhardt, Rev. Sci. Instrum. 87, 115109 (2016). https://doi.org/10.1063/1.4964847

  9. A. Miyake, T. Miyachi, M. Amemiya, T. Hasegawa, N. Ogushi, T. Yamamoto, F. Masaki, and Y. Watanabe, Proc. SPIE 5037, 647 (2003). https://doi.org/10.1117/12.484969

  10. M. Surman, I. Cragg-Hine, J. Singh, B. J. Bowler, H. A. Padmore, D. Norman, A. L. Johnson, W. K. Walter, D. A. King, R. Davis, K. G. Purcell, and G. Thornton, Rev. Sci. Instrum. 63, 4349 (1992). https://doi.org/10.1063/1.1143735

  11. W. B. Peatman, J. Bahrdt, F. Eggenstein, G. Reichardt, and F. Senf, Rev. Sci. Instrum. 66, 2801 (1995). https://doi.org/10.1063/1.1145558

  12. J. Romand and B. Vodar, Opt. Acta 9, 371 (1962). https://doi.org/10.1080/713826432

  13. M. C. Hettrick, Appl. Opt. 31, 7174 (1992). https://doi.org/10.1364/AO.31.007174

  14. M. C. Hettrick, Photonics 3, 1 (2016). https://doi.org/10.3390/photonics3010003

  15. M. C. Hettrick, Opt. Express 24, 26646 (2016). https://doi.org/10.1364/OE.24.026646

  16. T. Namioka, J. Opt. Soc. Am. 49, 446 (1959). http://doi/org./JOSA.49.000446

  17. E. A. Vishnyakov, A. O. Kolesnikov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electron. 46, 953 (2016). https://doi.org/10.1070/QEL16106

  18. E. N. Ragozin, E. A. Vishnyakov, A. O. Kolesnikov, A. S. Pirozhkov, and A. N. Shatokhin, Phys.—Usp. 64, 495 (2021). https://doi.org/10.3367/UFNe.2020.06.038799

  19. E. A. Vishnyakov, A. O. Kolesnikov, A. S. Pirozhkov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electron. 48, 916 (2018). https://doi.org/10.1070/QEL16707

  20. A. N. Shatokhin A.N., E. A. Vishnyakov, A. O. Kolesnikov, A. D. Nikolenko, and E. N. Ragozin, Zh. Tekh. Fiz. 91, 1548 (2021). https://doi.org/10.21883/JTF.2021.10.51369.86-21

  21. A. Kolesnikov, E. Vishnyakov, A. Shatokhin, and E. Ragozin, Appl. Opt. 61, 5334 (2022). https://doi.org/10.1364/AO.462053

Download references

ACKNOWLEDGMENTS

We express our gratitude to A.D. Nikolenko for useful discussions.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Kolesnikov or E. N. Ragozin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.O., Vishnyakov, E.A., Shatokhin, A.N. et al. Single-Element Broadband VLS Grating Monochromator. J. Surf. Investig. 17 (Suppl 1), S212–S219 (2023). https://doi.org/10.1134/S1027451023070236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070236

Keywords:

Navigation