Skip to main content
Log in

Abstract

In this paper, the effects of nitrogen flow rate on the physical and chemical properties of TiAlN thin films deposited from magnetron discharge plasma at different power modes have been investigated. A mixed Ti0.5Al0.5 target (50/50 at % element content) was mounted on the magnetron. Stainless steel and silicon wafers were used as substrates. The TiAlN films were obtained by magnetron sputtering with a constant argon flow (0.725 cm3/s). Two groups of TiAlN coatings were obtained at different magnetron powers. For the first and second groups, the power of the magnetron was 1.5 and 1 kW, respectively. A nitrogen flow for each group of samples varied from 0.125 to 0.5 cm3/s in 0.125 cm3/s increments. Changes in the surface morphology, microstructure, nanohardness, and content of Ti, Al, and N in the obtained films (in at %) were studied. The measurements were performed on an S-3400N SEM, a CSM Instruments hardness tester, and Zeiss Supra 55 (In-Lens detector type, electron energy of 10 keV) with a Raith150 Two electron-beam exposure unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Y. Liu, R. Mei, W. Li, J. Fan, Z. Lin, J. Yang, X. Liu, and L. Hua, Int. J. Electrochem. Sci. 18, 100142 (2023). https://doi.org/10.1016/j.ijoes.2023.100142

    Article  CAS  Google Scholar 

  2. M. Noori, M. Atapour, F. Ashrafizadeh, H. Elmkhah, G.G. di Confiengo, S. Ferraris, S. Perero, M. Cardu, and S. Spriano, Ceram. Int. 49, 23367 (2023). https://doi.org/10.1016/j.ceramint.2023.04.169

    Article  CAS  Google Scholar 

  3. C. Hu, K. Guo, Y. Li, Z. Gu, J. Quan, S. Zhang, and W. Zheng, Thin Solid Films 688, 137339 (2019). https://doi.org/10.1016/j.tsf.2019.05.058

    Article  ADS  CAS  Google Scholar 

  4. H.C. Barshilia, R.V. Lakshmi, P. Bera, B. Bai J. Basu, G. Srinivas, V.P. Kumar, and N.T. Manikandanath, Sol. Energy 239, 283 (2022). https://doi.org/10.1016/j.solener.2022.05.016

    Article  ADS  CAS  Google Scholar 

  5. S. Hsu, C. Chi, M. Lu, S. Chang, Y. Lai, S. Tsai, and J. Duh, J. Alloys Compd. 947, 169645 (2023). https://doi.org/10.1016/j.jallcom.2023.169645

    Article  CAS  Google Scholar 

  6. R. Li, C. Cheng, and J. Pu, Mater. Today Commun. 33, 104421 (2022). https://doi.org/10.1016/j.mtcomm.2022.104421

    Article  CAS  Google Scholar 

  7. Y. Shida, and H. Anada, Mater. Trans., JIM 35, 623 (1994). https://doi.org/10.2320/matertrans1989.35.623

    Article  CAS  Google Scholar 

  8. D. Kim, D. Seo, X. Huang, T. Sawatzky, H. Saari, J. Hong, and Y.W. Kim, Int. Mater. Rev. 59, 297 (2014). https://doi.org/10.1179/1743280414Y.0000000034

    Article  CAS  Google Scholar 

  9. J. Dai, J. Zhu, C. Chen, and F. Weng, J. Alloys Compd. 685, 784 (2016). https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  CAS  Google Scholar 

  10. M.M. Zhang, Y.S. Niu, X. Li, and J.X. Su, Ceram. Int. 46, 19274 (2020). https://doi.org/10.1016/j.ceramint.2020.04.267

    Article  CAS  Google Scholar 

  11. M.M. Zhang, Y. Feng, and Y. Wang, Acta Metall. Sin. 34, 1434 (2021). https://doi.org/10.1007/c40195-021-01264-8

    Article  CAS  Google Scholar 

  12. A. Donchev, L. Mengis, A. Couret, S. Mayer, H. Clemens, and M. Galetz, Intermetallics 139, 107270 (2021). https://doi.org/10.1016/j.intermet.2021.107270

    Article  CAS  Google Scholar 

  13. L. Wang, M. Wang, and H. Chen, Surf. Coat. Technol. 391, 125660 (2020). https://doi.org/10.1016/j.surfcoat.2020.125660

    Article  CAS  Google Scholar 

  14. I.V. Tudose, F. Comanescu, P. Pascariu, and S. Bucur, Funct. Nanostruct. Interfaces Environ., Biomed. Appl. 814401, 15 (2019). https://doi.org/10.1016/B978-0-12-814401-5.00002-5

    Article  Google Scholar 

  15. L. Liu, L. Zho, and W. Tang, Surf. Coat. Technol. 402, 126315 (2020). https://doi.org/10.1016/j.surfcoat.2020.126315

    Article  CAS  Google Scholar 

  16. M. Reith, C. Körner, and M. Schloffer, Materialia 14, 100902 (2020). https://doi.org/10.1016/j.mtla.2020.100902

    Article  CAS  Google Scholar 

  17. H. Clemens, and S. Mayer, Mater. High Temp. 33, 560 (2016). https://doi.org/10.1080/09603409.2016.1163792

    Article  CAS  Google Scholar 

  18. B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, Mater. High Temp. 33, 549 (2016). https://doi.org/10.1080/09603409.2016.1183068

    Article  CAS  Google Scholar 

  19. O. Ostrovskaya, C. Badini, and S.M. Deambrosis, Mater. Des. 208, 109905 (2021). https://doi.org/10.1016/j.matdes.2021.109905

    Article  CAS  Google Scholar 

  20. C. Badini, S.M. Deambrosis, and O. Ostrovskaya, Ceram. Int. 43, 5417 (2017). https://doi.org/10.1016/j.ceramint.2017.01.031

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported financially by the Ministry of Science and Higher Education of the Russian Federation under contract no. 075-03-2020-237/1 dated March 5, 2020 (project number FVVM-2020-0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Yurjev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.I., Yurjev, Y.N., Kazimirov, A.I. et al. Deposition of TiAlN Thin Films by Magnetron Discharge Plasma. J. Surf. Investig. 17 (Suppl 1), S121–S127 (2023). https://doi.org/10.1134/S1027451023070121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070121

Keywords:

Navigation