Skip to main content
Log in

On the Prospects of Lithography in the Region of Wavelengths Shorter than 13.5 nm

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A brief historical overview of the development of projection lithography in the extreme ultraviolet (EUV) range at a wavelength of 13.5 nm is presented. Using an eleven-mirror X-ray optical system as an example, the efficiency of a source—X-ray optics system for wavelengths of 13.5 nm (Mo/Si multilayer mirrors, tin laser-plasma source), 11.2 nm (Ru/Be multilayer mirrors, xenon source), and 10.8 nm (multilayer mirrors Ru/Sr, xenon source) is compared. Calculation is carried out taking into account experimental data on the reflection coefficients of multilayer mirrors and the conversion efficiency of laser-plasma X-ray sources based on multiply charged Sn and Xe ions. The maximum reflection coefficients of multilayer mirrors achieved are: RMo/Si = 70.15%, RRu/Be = 72.2%, and RRu/Sr = 62.2%. The efficiency of conversion of laser-radiation energy into X-ray radiation based on Sn ions at a wavelength of 13.5 nm corrected for the actual transmission band of the X-ray optical system is taken equal to CE13.5 = 5.4%. The conversion efficiency of the source based on Xe ions is taken equal to: CE11.2 = 1.0% and CE10.8 = 1.6%. The calculated productivity of lithographs expressed in arbitrary units at various wavelengths is: LP13.5 = 0.1091, LP11.2 = 0.0278, and LP10.8 = 0.0089. Despite the lower productivity, due to significant simplification of the lithograph design and the lower cost of both the equipment and its operation, lithography at a wavelength of 11.2 nm has good prospects for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. G. E. Moore, Electronics 38, 114 (1965). https://doi.org/10.1109/jproc.1998.658762

    Article  Google Scholar 

  2. K. Kim, U-In. Chung, Y. Park, J. Lee, J. Yeo, and D. Kim, Proc. SPIE 8326, 832605 (2012). https://doi.org/10.1117/12.920053

    Article  Google Scholar 

  3. DUV Lithography Systems TWINSCAN NXT:2000i. https://www.asml.com/en/products/duv-lithography-systems/twinscan-nxt2000i.

  4. M. Van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J.-W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, and T. Last, Proc. SPIE 10143, 101430D (2017). https://doi.org/10.1117/12.2258025

    Article  Google Scholar 

  5. EUV Lithography Systems TWINSCAN NXE:3400B. https://www.asml.com/en/products/euv-lithography-systems.

  6. H. Kinoshita, K. Kurihara, Y. Ishii, and Y. Torii, J. Vac. Sci. Technol., B 7, 1648 (1989). https://doi.org/10.1116/1.584507

    Article  CAS  Google Scholar 

  7. J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, Dowell, A. A. Mac, E. L. Raab, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicz, D. L. White, D. L. Windt, IIO. R. Wood, and J. H. Bruning, J. Vac. Sci. Technol., B 8, 1509 (1990). https://doi.org/10.1116/1.585106

    Article  CAS  Google Scholar 

  8. D. A. Tichenor, A. K. Ray-Chaudhuri, W. C. Replogle, et al., Proc. SPIE 4343, 19 (2001). https://doi.org/10.1117/12.436665

    Article  ADS  Google Scholar 

  9. P. Naulleau, K. A. Goldberg, E. H. Anderson, et al., J. Vac. Sci. Technol., B 20, 2829 (2002). https://doi.org/10.1116/1.1524976

    Article  CAS  Google Scholar 

  10. H. Meiling, E. Boon, N. Buzing, et al., Proc. SPIE 6921, 69210L (2008). https://doi.org/10.1117/12.773259

    Article  Google Scholar 

  11. S. Uzawa, H. Kubo, Y. Miwa, T. Tsuji, and H. Morishima, Proc. SPIE 6517, 651708 (2007). https://doi.org/10.1117/12.711650

    Article  Google Scholar 

  12. K. Tawarayama, H. Aoyama, T. Kamo, S. Magoshi, Y. Tanaka, S. Shirai, and H. Tanaka, Jpn. J. Appl. Phys. 48, 06FA02 (2009). https://doi.org/10.1143/JJAP.48.06FA02

    Article  CAS  Google Scholar 

  13. D. G. Volgunov, I. G. Zabrodin, B. A. Zakalov, S. Yu. Zuev, I. A. Kas’kov, E. B. Kluenkov, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Suslov, M. N. Toropov, and N. I. Chkhalo Bull. Russ. Acad. Sci.: Phys. 75, 49 (2011). https://doi.org/10.3103/S1062873811010278

    Article  CAS  Google Scholar 

  14. D. B. Abramenko, P. S. Antsiferov, D. I. Astakhov, et al., Phys.—Usp. 62, 304 (2019). https://doi.org/10.3367/UFNe.2018.06.038447

    Article  CAS  Google Scholar 

  15. A. Pirati, J. van Schoot, K. Troost, R. van Ballegoij, P. Krabbendam, J. Stoeldraijer, E. Loopstra, J. Benschop, J. Finders, H. Meiling, E. van Setten, N. Mika, J. Driedonkx, and U. Stamm, Proc. SPIE 10143, 101430G (2017). https://doi.org/10.1117/12.2261079

    Article  Google Scholar 

  16. I. Fomenkov, D. Brandt, A. Ershov, A. Schafgans, Y. Tao, G. Vaschenko, S. Rokitski, M. Kats, M. Vargas, M. Purvis, R. Rafac, B. La Fontaine, S. De Dea, A. LaForge, J. Stewart, S. Chang, M. Graham, D. Riggs, T. Taylor, M. Abraham, and D. Brown, Adv. Opt. Technol. 6, 173 (2017). https://doi.org/10.1515/aot-2017-0029

    Article  ADS  Google Scholar 

  17. N. N. Salashchenko and N. I. Chkhalo, Vestn. Ross. Akad. Nauk 78, 450 (2008). https://doi.org/10.1134/S1019331608030155

    Article  Google Scholar 

  18. S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, D. N. Rogachev, N. N. Salashchenko, Yu. A. Vainer, and S. Yu. Zuev, Tech. Phys. 55, 1168 (2010).

    Article  CAS  Google Scholar 

  19. D. S. Kuznetsov, A. E. Yakshin, J. M. Sturm, R. W. E. van de Kruijs, E. Louis, and F. Bijkerk, Opt. Lett. 40, 3776 (2015). https://doi.org/10.1364/OL.40.003778

    Article  ADS  CAS  Google Scholar 

  20. S. S. Churilov, R. R. Kildiyarova, A. N. Ryabtsev, and S. V. Sadovsky, Phys. Scr. 80, 045303 (2009). https://doi.org/10.1088/0031-8949/80/04/045303

    Article  ADS  CAS  Google Scholar 

  21. T. Otsuka, D. Kilbane, J. White, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, Appl. Phys. Lett. 97, 111503 (2010). https://doi.org/10.1063/1.3490704

    Article  ADS  CAS  Google Scholar 

  22. N. I. Chkhalo and N. N. Salashchenko, AIP Adv. 3, 082130 (2013). https://doi.org/10.1063/1.4820354

    Article  ADS  CAS  Google Scholar 

  23. B. Sae-Lao and C. Montcalm, Opt. Lett. 26, 468 (2001). https://doi.org/10.1364/OL.26.000468

    Article  ADS  CAS  PubMed  Google Scholar 

  24. S. Bajt, J. Vac. Sci. Technol., A 18, 557 (2000). https://doi.org/10.1116/1.582224

    Article  CAS  Google Scholar 

  25. N. I. Chkhalo, V. N. Polkovnikov, N. N. Salashchenko, and R. A. Shaposhnikov, Zh. Tekh. Fiz. 92, 1207 (2022). https://doi.org/10.21883/JTF.2022.08.52785.102-22

    Article  Google Scholar 

  26. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, Proc. SPIE 6517, 65170I (2007). https://doi.org/10.1117/12.711796

    Article  ADS  CAS  Google Scholar 

  27. R. M. Smertin, N. I. Chkhalo, M. N. Drozdov, S. A. Garakhin, S. Yu. Zuev, V. N. Polkovnikov, N. N. Salashchenko, and P. A. Yunin, Opt. Express 30, 46749 (2022). https://doi.org/10.1364/OE.475079

    Article  ADS  CAS  PubMed  Google Scholar 

  28. R. A. Shaposhnikov, V. N. Polkovnikov, N. N. Salashchenko, N. I. Chkhalo, and S. Yu. Zuev, Opt. Lett. 47, 4351 (2022). https://doi.org/10.1364/OL.469260

    Article  ADS  CAS  PubMed  Google Scholar 

  29. I. Fomenkov, in Proc. 2019 Source Workshop (Amsterdam, 2019), p. S1.

  30. S. G. Kalmykov, P. S. Butorin, and M. E. Sasin, J. Ap-pl. Phys. 126, 103301 (2019). https://doi.org/10.1063/1.5115785

    Article  ADS  CAS  Google Scholar 

  31. E. Miura, H. Honda, K. Katsura, E. Takahashi, and K. Kondo, Appl. Phys. B 70, 783 (2000). https://doi.org/10.1007/PL00021135

    Article  ADS  CAS  Google Scholar 

  32. B. A. M. Hansson, M. Bergiund, O. Hemberg, and H. M. Hertz, Proc. SPIE 3997, 729 (2000). https://doi.org/10.1117/12.390049

    Article  ADS  CAS  Google Scholar 

  33. P. V. Nickles, M. Schnurer, H. Stiel, U. Vogt, S. Ter-Avetisyan, and W. Sandner, Proc. SPIE 4504, 106 (2001). https://doi.org/10.1117/12.448455

    Article  ADS  CAS  Google Scholar 

  34. G. Schriever, K. Bergmann, and R. Lebert, J. Vac. Sci. Technol., B 17, 2058 (1999). https://doi.org/10.1116/1.590872

    Article  CAS  Google Scholar 

  35. N. I. Chkhalo, S. A. Garakhin, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. N. Tsybin, AIP Adv. 8, 105003 (2018). https://doi.org/10.1063/1.5048288

    Article  ADS  CAS  Google Scholar 

  36. N. I. Chkhalo, S. V. Golubev, D. Mansfeld, N. N. Salashchenko, L. A. Sjmaenok, and A. V. Vodopyanov, J. Micro/Nanolithogr. MEMS, MOEMS 11, 021123 (2012). https://doi.org/10.1117/1.JMM.11.2.021123

    Article  CAS  Google Scholar 

  37. N. I. Chkhalo, M. N. Drozdov, E. B. Kluenkov, S. V. Kuzin, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 55, 4683 (2016). https://doi.org/10.1364/AO.55.004683

    Article  ADS  CAS  PubMed  Google Scholar 

  38. P. N. Aruev, B. Y. Ber, N. V. Zabrodskaya, V. V. Zabrodskii, M. V. Petrenko, V. L. Sukhanov, M. M. Barysheva, A. Y. Lopatin, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and N. I. Chkhalo, Quantum Electron. 42, 943 (2012). https://doi.org/10.1070/QE2012v042n10ABEH014901

    Article  CAS  Google Scholar 

  39. A. G. Shalashov, A. V. Vodopyanov, I. S. Abramov, A. V. Sidorov, E. D. Gospodchikov, S. V. Razin, N. I. Chkhalo, N. N. Salashchenko, M. Yu. Glyavin, and S. V. Golubev, Appl. Phys. Lett. 113, 153502 (2018). https://doi.org/10.1063/1.5049126

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out with financial support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1350 dated October 5, 2021, internal number 15.SIN.21.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chkhalo.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chkhalo, N.I., Durov, K.V., Nechay, A.N. et al. On the Prospects of Lithography in the Region of Wavelengths Shorter than 13.5 nm. J. Surf. Investig. 17 (Suppl 1), S226–S232 (2023). https://doi.org/10.1134/S1027451023070078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070078

Keywords:

Navigation