Skip to main content
Log in

Numerical Simulation of Thermal Processes and the Effect of Heating of Near-Surface Layers of Titanium on the Diffusion Transfer of Dopants during High-Intensity Pulsed Ion Implantation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Methods for modifying surface and near-surface layers of materials and coatings by ion beams have prospects for application in many fields of science and technology. The method of high-intensity implantation by high-power density ion beams with submillisecond duration involves significant pulsed heating of the near-surface layer of irradiated target, followed by its rapid cooling. This occurs due to heat removal into the material due to thermal conductivity and repetitively pulsed radiation-enhanced diffusion of atoms to depths that are much greater than the projective ion range. The paper considers the features of thermal processes and the effect of pulsed heating of near-surface titanium layers on diffusion transfer under conditions of synergy of high-intensity implantation of titanium ions and the energy impact of a repetitively-pulsed beam of high-power density on the surface in order to increase the depth of ion doping due to radiation-enhanced diffusion under conditions limited heating of the entire sample. The data of numerical simulation of dynamic changes in temperature fields in titanium and titanium self-diffusion under the action of ion beams with a submillisecond duration and a pulse power of tens of kW/cm2 and fluence of ions in a pulse 1.25 × 1015 ion/cm2 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Ryssel and I. Ruge, Ion Implantation (Wiley, Chichester, 1986). https://doi.org/10.1002/sia.740100409

    Book  Google Scholar 

  2. J. S. Williams and J. M. Poate, Ion Implantation and Beam Processing (Academic, Orlando, 1984).

    Google Scholar 

  3. F. F. Komarov, Phys.—Usp. 46, 1253 (2003). https://doi.org/10.1070/PU2003v046n12ABEH001286

    Article  CAS  Google Scholar 

  4. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, Berlin, 2007).

    Book  Google Scholar 

  5. S. H. Valiev, T. S. Pugacheva, F. G. Jurabekova, S. A. Lem, and Y. Miyagawa, Nucl. Instrum. Methods Phys. Res., Sect. B. 127–128, 265 (1997). https://doi.org/10.1016/S0168-583X(96)00937-8

    Article  Google Scholar 

  6. P. S. Ho, Surf. Sci. 72 (2), 253 (1978). https://doi.org/10.1016/0039-6028(78)90294-7

    Article  CAS  Google Scholar 

  7. A. Miotello and P. Mazzoldi, J. Appl. Phys. 54, 4235 (1983). https://doi.org/10.1063/1.332527

    Article  CAS  Google Scholar 

  8. A. H. Eltoukhy and J. E. Green, J. Appl. Phys. 51, 4444 (1980). https://doi.org/10.1063/1.328265

    Article  CAS  Google Scholar 

  9. R. Sizmann, J. Nucl. Mater. 69–70, 386 (1978). https://doi.org/10.1016/0022-3115(78)90256-8

    Article  Google Scholar 

  10. W. Shockley, US Patent No. 2787564 (1957).

  11. J. M. Poate, G. Foti, and D. C. Jacobson, Surface Modification and Alloying by Laser, Ion, and Electron Beams (Springer, Berlin, 2013).

    Google Scholar 

  12. A. I. Ryabchikov, I. B. Stepanov, S. V. Dektjarev, and O. V. Sergeev, Rev. Sci. Instrum. 69, 810 (1998). https://doi.org/10.1063/1.1148585

    Article  CAS  Google Scholar 

  13. A. G. Nikolaev, E. M. Oks, K. P. Savkin, G. Yu. Yushkov, and I. G. Brown, Rev. Sci. Instrum. 83, 02A501 (2012). https://doi.org/10.1063/1.3655529

  14. A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition (Wiley, New York, 2000).

    Google Scholar 

  15. M. Widner, I. Alexeff, W. D. Jones, and K. E. Lonngren, Phys. Fluids 13, 2532 (1970). https://doi.org/10.1063/1.1692823

    Article  Google Scholar 

  16. A. Anders, Surf. Coat. Technol. 93, 158 (1997). https://doi.org/10.1016/S0257-8972(97)00037-6

    Article  CAS  Google Scholar 

  17. R. Wei, Surf. Coat. Technol. 83, 218 (1996). https://doi.org/10.1016/0257-8972(95)02828-5

    Article  CAS  Google Scholar 

  18. A. I. Ryabchikov, P. S. Ananin, S. V. Dektyarev, D. O. Sivin, and A. E. Shevelev, Vacuum 143, 447 (2017). https://doi.org/10.1016/j.vacuum.2017.03.011

    Article  CAS  Google Scholar 

  19. A. I. Ryabchikov, D. O. Sivin, O. S. Korneva, I. A. Bozhko, and A. I. Ivanova, Surf. Coat. Technol. 388, 125557 (2020). https://doi.org/10.1016/j.surfcoat.2020.125557

    Article  CAS  Google Scholar 

  20. A. I. Ryabchikov, A. E. Shevelev, D. O. Sivin, I. A. Bozhko, E. B. Kashkarov, G. A. Bleykher, I. B. Stepanov, and A. I. Ivanova, J. Alloys Compd. 793, 604 (2019). https://doi.org/10.1016/j.jallcom.2019.04.179

    Article  CAS  Google Scholar 

  21. A. I. Ryabchikov, IEEE Trans Plasma Sci. 49, 2529 (2021). https://doi.org/10.1109/TPS.2021.3073942

    Article  CAS  Google Scholar 

  22. A. I. Ryabchikov, S. V. Dektyarev, O. S. Korneva, and D. O. Vakhrushev, Russ. Phys. 65, 1940 (2023). https://doi.org/10.1007/s11182-023-02854-y

    Article  CAS  Google Scholar 

  23. A. I. Ivanova, D. O. Sivin, O. S. Korneva, and G. A. Bleykher, Proc. 8th Int. Congress on Energy Fluxes and Radiation Effects (EFRE-2022) (Tomsk, 2022). https://doi.org/10.56761/EFRE2022.C2-P-018602

  24. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskiy, et al., Physical Quantities: A Handbook (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-79-10 061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.I., Bleykher, G.A. Numerical Simulation of Thermal Processes and the Effect of Heating of Near-Surface Layers of Titanium on the Diffusion Transfer of Dopants during High-Intensity Pulsed Ion Implantation. J. Surf. Investig. 17, 1458–1462 (2023). https://doi.org/10.1134/S1027451023060289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060289

Keywords:

Navigation