Skip to main content
Log in

Nuclear Stopping Powers for DFT Potentials with an Attractive Well

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this paper, we calculate the nuclear stopping powers for the H, D, T–Be, C, W systems that are necessary for calculating the plasma-wall interaction in thermonuclear research, as well as for the Kr–Si, Kr–Ge, O–Si systems used for ion implantation in semiconductors using interaction potentials obtained in the framework of density-functional theory. In the range of collision energies of 10–1000 eV, the obtained data differ from the SRIM data by 15–70%. The presence of a potential well leads to the appearance of an additional peak in the dependence of the nuclear stopping cross section at low energies. A comparison of the classical calculations of the transport cross section with the semiclassical ones shows their identity at energies up to 0.3 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Lindhard, M. Scharff, and H. E. Schiott, Mat.-Fys. Medd.—K. Dan. Vidensk. Selsk. 33, 1 (1963).

    Google Scholar 

  2. Improvement of the Reliability and Accuracy of Heavy Ion Beam Analysis, Technical Reports Series, No. 485, Ed. by A. Simon (IAEA, Vienna, 2019.)

    Google Scholar 

  3. A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 829 (2011). https://doi.org/10.1016/j.nimb.2010.11.074

    Article  CAS  Google Scholar 

  4. A. N. Zinoviev and K. Nordlund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 511 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

    Article  CAS  Google Scholar 

  5. S. R. Naqvi, G. Possnert, and D. Primetzhofer, Nucl. Instrum. Methods Phys. Res., Sect. B 371, 76 (2016). https://doi.org/10.1016/j.nimb.2015.09.048

    Article  CAS  Google Scholar 

  6. H. Grahmann and S. Kalbitzer, Nucl. Instrum. Methods Phys. Res. 132, 119 (1976). https://doi.org/10.1016/0029-554X(76)90720-5

    Article  Google Scholar 

  7. D. Jedrejcic and U. Greife, Nucl. Instrum. Methods Phys. Res., Sect. B 428, 1 (2018). https://doi.org/10.1016/j.nimb.2018.04.039

    Article  CAS  Google Scholar 

  8. R. Shnidman, R. M. Tapphorn, and K. N. Geller, Ap-pl. Phys. Lett. 22, 551 (1973). https://doi.org/10.1063/1.1654504

    Article  CAS  Google Scholar 

  9. L. G. Glazov and P. Sigmund, Nucl. Instrum. Methods Phys. Res., Sect. B 207, 240 (2003). https://doi.org/10.1016/S0168-583X(03)00461-0

    Article  CAS  Google Scholar 

  10. Th. Krist, P. Mertens, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 177 (1984). https://doi.org/10.1016/0168-583X(84)90183-6

    Article  Google Scholar 

  11. P. S. Krstic and D. R. Schultz, Phys. Plasmas 13, 053501 (2006). https://doi.org/10.1063/1.2199808

    Article  CAS  Google Scholar 

  12. D. R. Schultz and P. S. Krstic, Phys. Plasmas 9, 64 (2002). https://doi.org/10.1063/1.1419056

    Article  CAS  Google Scholar 

  13. H. Ryssel and I. Ruge, Ion Implantation (Wiley, Chichester, 1986; Nauka, Moscow, 1983).

  14. L. D Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  15. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Clarendon, Oxford, 1949; Mir, Moscow, 1969).

  16. A. N. Zinoviev, Tech. Phys. 53, 13 (2008). https://doi.org/10.1134/S1063784208010039

    Article  Google Scholar 

  17. DMol Software, 1997.

  18. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, K. Nordlund, and A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 460, 4 (2019). https://doi.org/10.1016/j.nimb.2019.03.037

    Article  CAS  Google Scholar 

  19. A. N. Zinoviev, P. Yu. Babenko, and K. Nordlund, Nuc-l. Instrum. Methods Phys. Res., Sect. B 508, 10 (2021). https://doi.org/10.1016/j.nimb.2021.10.001

    Article  CAS  Google Scholar 

  20. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC, Boca Raton, 2007). https://doi.org/10.1201/9781420007282

    Book  Google Scholar 

  21. B. Darwent, Bond Dissociation Energies in Simple Molecules (Natl. Bureau Stand., Washington, DC, 1970).

    Book  Google Scholar 

  22. A A. Radzig, B. M. Smirnov, Reference Data on Ato-ms, Molecules, and Ions (Springer, Berlin, 1985).

  23. B. P. Nikol’skii, Chemist’s Handbook (Khimiya, Leningrad, 1966), Vol. 1.

    Google Scholar 

  24. NIST Data Base. https://webbook.nist.gov/chemistry.

  25. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.

    Google Scholar 

  26. J. F. Ziegler and J. P. Biersack, SRIM. http://www.srim.org.

  27. P. Yu. Babenko and A. N. Zinoviev, Tech. Phys. 67, 1 (2021). https://doi.org/10.1134/S1063784222010029

    Article  Google Scholar 

  28. O. B. Firsov, Zh. Eksp. Teor. Fiz. 7, 308 (1958).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zinoviev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, P.Y., Zinoviev, A.N. Nuclear Stopping Powers for DFT Potentials with an Attractive Well. J. Surf. Investig. 17, 1267–1272 (2023). https://doi.org/10.1134/S1027451023060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060058

Keywords:

Navigation