Skip to main content
Log in

Features of the Formation of Surface Layers of VT6 Titanium Alloy under N+ Ion-Implantation Conditions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We study the effect of the implantation of N+ ions on the chemical composition and atomic structure of the surface layers of VT6 titanium alloy. Nitrogen is accumulated in the surface layers up to concentrations of 30 at % or more, and chemical compounds of titanium nitride TiN are formed as phase inclusions. Presumably, this phenomenon is attributed to certain chemical processes, particularly, the chemical reactivity of titanium atoms and their propensity to interact with nitrogen atoms. Although the integral concentration of oxygen in the surface layers decreases under ion bombardment due to sputtering, oxidation of the components of the VT6 titanium alloy is observed in deeper layers. Oxygen from both the natural-oxide layer and the residual atmosphere in the vacuum chamber, penetrating deeper into surface layers during irradiation, is involved in the oxidation of titanium-alloy components. The accumulation of nitrogen, the formation of titanium nitrides, and the oxidation of the components of the VT6 titanium alloy testify to the significant role of chemical processes in the formation of the structural-phase state of the surface layers of the VT6 titanium alloy under N+-implantation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. A. Kozlov, B. A. Krit, V. V. Stolyarov, and V. V. Ovchinnikov, Inorg. Mater.: Appl. Res. 3, 216 (2012). https://doi.org/10.1134/S2075113311030142

    Article  Google Scholar 

  2. F. F. Komarov, Ion Implantation in Metals (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  3. J. Jin, Y. Chen, K. Gao, and X. Huang, Appl. Surf. Sci. 305, 93 (2014). https://doi.org/10.1016/j.apsusc.2014.02.174

    Article  CAS  Google Scholar 

  4. A. R. Sungatulin, V. P. Sergeev, M. V. Fedorishcheva, and O. V. Sergeev, Izv. Tomsk. Politekh. Univ. 315, 134 (2009).

    Google Scholar 

  5. S. N. Bratushka and L. V. Malikov, Vopr. At. Nauki Tekh., Ser.: Vak., Chist. Mater., Sverkhprovodn., No. 6, 126 (2011).

  6. T. R. Rautray, R. Narayanan, and K.-H. Kim, Prog. Mater. Sci. 56, 1137 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.002

    Article  CAS  Google Scholar 

  7. F. Hohl, H. Berndt, P. Mayr, and H.-R. Stock, Surf. Coat. Technol. 74, 765 (1995). https://doi.org/10.1016/0257-8972(95)08274-3

    Article  Google Scholar 

  8. V. L. Vorob’ev, P. V. Bykov, A. A. Kolotov, F. Z. Gilmutdinov, I. K. Averkiev, and V. Ya. Bayankin, Phys. Met. Metallogr. 122, 1213 (2021). https://doi.org/10.1134/S0031918X21120139

    Article  Google Scholar 

  9. Y. Itoh, A. Itoh, H. Azuma, and T. Hioki, Surf. Coat. Technol. 111, 172 (1999). https://doi.org/10.1016/S0257-8972(98)00728-2

    Article  CAS  Google Scholar 

  10. L. Thair, U. K. Mudali, S. Rajagopalan, R. Asokamani, and B. Raj, Corros. Sci. 45, 1951 (2003). https://doi.org/10.1016/S0010-938X(03)00027-1

    Article  CAS  Google Scholar 

  11. V. C. Nath, D. K. Sood, and R. R. Manory, Surf. Coat. Technol. 49, 510 (1991). https://doi.org/10.1016/0257-8972(91)90109-A

    Article  CAS  Google Scholar 

  12. V. L. Vorob’ev, F. Z. Gil’mutdinov, P. V. Bykov, et al., Kim. Fiz. Mezosk. 20, 355 (2018).

    Google Scholar 

  13. V. L. Vorob’ev, F. Z. Gil’mutdinov, P. V. Bykov, et al., Phys. Met. Metallogr. 119, 852 (2018). https://doi.org/10.1134/S0031918X18090144

    Article  Google Scholar 

  14. E. V. Shelekhov and T. A. Sviridova, Met. Sci. Heat Treat. 42, 309 (2000). https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  15. V. A. Rabinovich and Z. Ya. Khavin, Brief Chemical Handbook, 2nd ed. (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  16. A. S. Bolgar and V. F. Litvienko Thermodynamic Properties of Nitrides (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  17. NIST XPS Database (2012) NIST. https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx.

  18. V. I. Nefedov, X-Ray Electron Spectroscopy of Chemical Compounds: A Handbook (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  19. J. Kurdi, H. Ardelean, P. Marcus, P. Jonnard, and F. Arefi-Khonsari, Appl. Surf. Sci. 189, 119 (2002). https://doi.org/10.1016/S0169-4332(02)00017-X

    Article  CAS  Google Scholar 

  20. H. Ardelean, S. Petit, P. Laurens, P. Marcus, and F. Arefi-Khonsari, Appl. Surf. Sci. 243, 304 (2005). https://doi.org/10.1016/j.apsusc.2004.09.122

    Article  CAS  Google Scholar 

  21. J. R. Lindsay, H. Jr. Rose, W. E. Swartz, Jr., P. H. Watts, Jr., and K. A. Rayburn, Appl. Spectroscopy. 27, 1 (1973). https://doi.org/10.1366/000370273774333876

    Article  CAS  Google Scholar 

  22. T. Gougousi, D. Barua, E. D. Young, and G. N. Parsons, Chem. Mater. 17, 5093 (2005). https://doi.org/10.1021/cm0510965

    Article  CAS  Google Scholar 

  23. Y. Liu, D. Wang, C. Deng, et al., J. Alloys Compd. 628 208 (2015). https://doi.org/10.1016/j.jallcom.2014.12.144

    Article  CAS  Google Scholar 

  24. V. L. Vorob’ev, L. V. Dobysheva, A. Yu. Drozdov, et al., J. Electron Spectrosc. Relat. Phenom. 252, 147124 (2021). https://doi.org/10.1016/j.elspec.2021.147124

    Article  CAS  Google Scholar 

  25. M. C. Biesinger, LeoW. M. Lau, A. R. Gerson, et al., Appl. Surf. Sci. 257, 887 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  26. H. Idriss, Surf. Sci. 712, 121894 (2021). https://doi.org/10.1016/j.susc.2021.121894

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using equipment of the Central Collective Use Center “Center for Physical and Physical-Chemical Methods of Analysis, Study of the Properties and Characteristics of Surfaces, Nanostructures, Materials and Products” of the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

The work was supported within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. 121030100002-0, and with the support of the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2021-1351 in terms of research by X-ray photoelectron spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Vorobyov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyov, V.L., Bykov, P.V., Gilmutdinov, F.Z. et al. Features of the Formation of Surface Layers of VT6 Titanium Alloy under N+ Ion-Implantation Conditions. J. Surf. Investig. 17, 1388–1394 (2023). https://doi.org/10.1134/S1027451023050348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050348

Keywords:

Navigation