Skip to main content
Log in

Structural Features and Phase Transitions during Dehydrogenation of a Composite Based on Magnesium Hydride and Metal-Organic Framework Structures MIL-101 (Cr)

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

It is shown that a composite based on magnesium hydride and metal-organic framework, formed during mechanical synthesis in a high-energy ball mill, has a core–shell structure in which magnesium hydride particles are coated with nanoscale particles of the MIL-101 metal-organic framework. The distribution of particles of the metal-organic framework creates trapping centers and channels for hydrogen diffusion, resulting in a decrease in the temperature of hydrogen desorption from magnesium hydride by 270°C compared to pure MgH2. In turn, lowering the temperature leads to a decrease in the desorption activation energy, which can favorably influence the use of such a composite as a hydrogen storage material. An in situ analysis of the phase transitions during dehydrogenation has shown that the phase transitions in the composite occur in three main stages. The first stage is characterized by defect annealing and structure relaxation without hydrogen desorption, the second stage involves hydrogen desorption without hydride dissociation, and the third stage involves hydride dissociation followed by residual hydrogen desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Scovell, Int. J. Hydrogen Energy 47, 10441 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.099

    Article  CAS  Google Scholar 

  2. Y. Sun, C. Shen, Q. Lai, W. Liu, D. Wang, and K. Aguey-Zinsou, Energy Storage Mater. 10, 168 (2018). https://doi.org/10.1016/j.ensm.2017.01.010

    Article  Google Scholar 

  3. M. Ball and M. Wietschel, Int. J. Hydrogen Energy 34, 615 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  CAS  Google Scholar 

  4. S. Renssen, Nature Climate Change 10, 799 (2020). https://doi.org/10.1038/s41558-020-0891-0

    Article  Google Scholar 

  5. D. Milani, A. Kiani, and R. McNaughton, Int. J. Hydrogen Energy 45, 24125 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.041

    Article  CAS  Google Scholar 

  6. V. Kudiiarov, J. Lyu, O. Semenov, A. Lider, S. Chaemchuen, and F. Verpoort, Appl. Mater. Today 25, 101208 (2021). https://doi.org/10.1016/j.apmt.2021.101208

    Article  Google Scholar 

  7. O. Shin-ichi, N. Yuko, J. Eliseo, A. Züttel, and C. Jensen, Chem. Rev. 107, 4111 (2007). https://doi.org/10.1021/cr0501846

    Article  CAS  Google Scholar 

  8. L. Schlapbach and A. Züttel, Nature 414, 353 (2001). https://doi.org/10.1038/35104634

    Article  CAS  Google Scholar 

  9. J. Lyu, V. Kudiiarov, and A. Lider, Nanomaterials 10, 255 (2020). https://doi.org/10.3390/nano10020255

    Article  CAS  Google Scholar 

  10. F. Zhang, P. Zhao, M. Niu, and J. Maddy, Int. J. Hydrogen Energy 41, 14535 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  CAS  Google Scholar 

  11. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, and J. Yang, Int. J. Hydrogen Energy 37, 1048 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.125

    Article  CAS  Google Scholar 

  12. S. Aceves, G. Petitpas, F. Espinosa-Loza, M. Matthews, and E. Ledesma-Orozco, Int. J. Hydrogen Energy 38, 2480 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.123

    Article  CAS  Google Scholar 

  13. V. Kudiiarov, E. Kashkarov, M. Syrtanov, and A. Lider, Int. J. Hydrogen Energy 42, 10604 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.036

    Article  CAS  Google Scholar 

  14. K. Edalati, R. Uehiro, and Y. Ikeda, Acta Mater. 149, 88 (2018). https://doi.org/10.1016/j.actamat.2018.02.033

    Article  CAS  Google Scholar 

  15. T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, Int. J. Hydrogen Energy 46, 31963 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.218

    Article  CAS  Google Scholar 

  16. L. Ouyang, F. Liu, H. Wang, J. Liu, X. Yang, L. Sun, and M. Zhu, J. Alloys Compd. 832, 154865 (2020). https://doi.org/10.1016/j.jallcom.2020.154865

    Article  CAS  Google Scholar 

  17. M. Mehrizi, J. Abdi, M. Rezakazemi, and E. Salehi, Int. J. Hydrogen Energy 45, 17583 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.201

    Article  CAS  Google Scholar 

  18. J. Lyu, A. Lider, and V. Kudiiarov, Metals 9, 768 (2019). https://doi.org/10.3390/met9070768

    Article  CAS  Google Scholar 

  19. A. Bhatnagar, J. Johnson, M. Shaz, and O. Srivastava, J. Phys. Chem. C 122, 21248 (2018). https://doi.org/10.1021/acs.jpcc.8b07640

    Article  CAS  Google Scholar 

  20. C. Zhou, C. Li, Y. Li, and Q. Zhang, Dalton Trans. 48, 7735 (2019). https://doi.org/10.1039/C9DT01214A

    Article  CAS  Google Scholar 

  21. B. Ma, C. Tan, L. Ouyang, H. Shao, N. Wang, and M. Zhu, J. Alloys Compd. 918, 165803 (2022). https://doi.org/10.1016/j.jallcom.2022.165803

    Article  CAS  Google Scholar 

  22. D. Korablov, F. Besenbacher, and T. Jensen, Int. J. Hydrogen Energy 43, 16804 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.091

    Article  CAS  Google Scholar 

  23. R. Saha, V. Sharma, D. De, P. K. Bharadwaj, and P. Chattaraj, Polyhedron 153, 254 (2018). https://doi.org/10.1016/j.poly.2018.07.048

    Article  CAS  Google Scholar 

  24. J. Kärger, D.D.M. Ruthven, D.D.N. Theodorou, et al., Diffusion in Nanoporous Materials (Wiley, Berlin, 2012). https://doi.org/10.1002/9783527651276.ch19

    Book  Google Scholar 

  25. M. Witman, S. Ling, A. Gladysiak, K. Stylianou, B. Smit, B. Slater, and M. Haranczyk, J. Phys. Chem. C 121, 1171 (2017). https://doi.org/10.1021/acs.jpcc.6b10363

    Article  CAS  Google Scholar 

  26. Z. Ma, J. Zou, D. Khan, W. Zhu, C. Hu, X. Zeng, and W. Ding, J. Mater. Sci. Technol. 35, 2132 (2019). https://doi.org/10.1016/j.jmst.2019.05.049

    Article  CAS  Google Scholar 

  27. Z. Ma, S. Panda, Q. Zhang, F. Sun, D. Khan, W. Ding, and J. Zou, Chem. Eng. J. 406, 126790 (2021). https://doi.org/10.1016/j.cej.2020.126790

    Article  CAS  Google Scholar 

  28. Z. Ma, Q. Zhang, W. Zhu, D. Khan, C. Hu, T. Huang, and J. Zou, Sustainable Energy Fuels 4, 2192 (2020). https://doi.org/10.1039/D0SE00081G

    Article  CAS  Google Scholar 

Download references

FUNDING

The work was supported by the Russian Science Foundation (Grant no. 22-29-01280). The high-temperature synchrotron X-ray diffraction investigations were done at the shared research center SSTRC on the basis of the Novosibirsk FEL at BINP SB RAS, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kurdyumov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudiiarov, V.N., Kurdyumov, N.E., Elman, R.R. et al. Structural Features and Phase Transitions during Dehydrogenation of a Composite Based on Magnesium Hydride and Metal-Organic Framework Structures MIL-101 (Cr). J. Surf. Investig. 17, 1156–1161 (2023). https://doi.org/10.1134/S1027451023050233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050233

Keywords:

Navigation