Skip to main content
Log in

Investigation of the Corrosion Properties of Bulk Amorphous Metal Alloys Based on Zirconium

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We investigate the corrosion resistance of amorphous zirconium-based alloys in a simulated biological fluid and in aqueous solutions of hydrochloric acid (with a HCl concentration of 0.1, 0.2, and 0.4 mol/L). Upon studying the effect of a simulated biological fluid, the samples are exposed to the medium in two ways. In the first case, the sample is completely immersed in a corrosive liquid. In the second, the sample is subjected to the local action of a drop of biological fluid deposited onto the surface. It is found that prolonged exposure to the medium leads to dissolution of the surface layer of the sample, while the local impact of drops does not affect the surface. The preliminary implantation of argon and nitrogen ions diminishes the effect of the simulated biological fluid on the samples. Polarization curves are obtained for all investigated alloys. In the curves obtained for alloys in a simulated biological fluid, the cathode and anode branches have a conventional form. The polarization curves for zirconium-based alloys in an aqueous medium with a HCl concentration of 0.1, 0.2, and 0.4 mol/L depend on the elemental composition of the alloys. In a sample without copper, the corrosion potential at different concentrations of HCl changes insignificantly. For a sample with a copper content of 15%, the corrosion potential shifts to the cathode region with an increase in the concentration of hydrochloric acid. The polarization curves of the sample with a high copper content (45%) are qualitatively different from the curves of the other samples. As in the sample with 15% of copper, the corrosion potential shifts to the negative region with an increase in the concentration of hydrochloric acid. The amorphous structure of the electrode material in zirconium-based alloys increases their corrosion resistance in comparison to the crystalline structure since the amorphous structure hinders the transition of the metal to the ionic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (CRC, Boca Raton, 2017). https://doi.org/10.1201/9781315153483

  2. H. F. Li and Y. F. Zheng, Acta Biomater. 36, 1 (2016). https://doi.org/10.1016/j.actbio.2016.03.047

    Article  CAS  Google Scholar 

  3. N. Hua, L. Huang, W. Chen, W. He, and T. Zhang, Mater. Sci. Eng., C 44, 400 (2014). https://doi.org/10.1016/j.msec.2014.08.049

    Article  CAS  Google Scholar 

  4. D. Geissler, M. Uhlemann, and A. Gebert, Corros. Sci. 159, 108057 (2019). https://doi.org/10.1016/j.corsci.2019.06.012

    Article  CAS  Google Scholar 

  5. P. F. Gostin, D. Eigel, D. Grell, M. Uhlemann, Eb. Kerscher, J. Eckert, and An. Gebert, Metals 5, 1262 (2015). https://doi.org/10.3390/met5031262

    Article  Google Scholar 

  6. D. Grell, Y. Wilkin, P. Gostin, A. Gebert, and E. Kerscher, Front. Mater. 3, 1 (2017). https://doi.org/10.3389/fmats.2016.00060

    Article  Google Scholar 

  7. J. Wataha, P. Lockwood, and A. Schedle, J. Biomed. Mater. Res. 52, 360 (2000). https://doi.org/10.1002/1097-4636(200011)52:2<360::aid-jbm16>3.0.co;2-b

    Article  CAS  Google Scholar 

  8. F. Sunderman, Fed. Proc. 37, 40 (1978).

    CAS  Google Scholar 

  9. L. Liu, C. Qiu, Q. Chen, and S. Zhang, J. Alloys Compd. 425, 268 (2006). https://doi.org/10.1016/J.JALLCOM.2006.01.048

    Article  CAS  Google Scholar 

  10. S. Hiromoto, A. Tsai, M. Sumita, and T. Hanawa, Corros. Sci. 42, 2193 (2000). https://doi.org/10.1016/S0010-938X(00)00056-1

    Article  CAS  Google Scholar 

  11. Y. Li, W. Zhang, C. Dong, J. Qiang, M. Fukuhara, A. Makino, and A. Inoue, Mater. Sci. Eng., A 528, 8551 (2011). https://doi.org/10.1016/j.msea.2011.07.077

    Article  CAS  Google Scholar 

  12. B. Zberg, P. Uggowitzer, and J. Lofer, Nat. Mater. 8, 887 (2009). https://doi.org/10.1038/nmat2542

    Article  CAS  Google Scholar 

  13. V. Raju, U. Kühn, U. Wol, F. Schneider, J. Eckert, R. Reiche, and A. Gebert, Mater. Lett. 57, 173 (2002).

    Article  CAS  Google Scholar 

  14. C. Qin, K. Asami, T. Zhang, W. Zhang, and A. Inoue, Mater. Trans. 44, 749 (2003).

    Article  CAS  Google Scholar 

  15. S. Pang, T. Zhang, K. Asami, and A. Inoue, J. Mater. Res. 18, 1652 (2003). https://doi.org/10.1557/JMR.2003.0227

    Article  CAS  Google Scholar 

  16. T. Inoue, J. Zhang, M. Saida, M. Matsushita, and T. Sakurai, Mater. Trans. JIM 40, 1181 (1999). https://doi.org/10.2320/matertrans1989.40.1181

    Article  CAS  Google Scholar 

  17. L. Liu, K. Chan, and G. Pang, Appl. Phys. Lett. 85, 2788 (2004). https://doi.org/10.1063/1.1801677

    Article  CAS  Google Scholar 

  18. Y. Liu, Y. -M. Wang, H. -F. Pang, Q. Zhao, and L. Liu, Acta Biomater. 9, 7043 (2013). https://doi.org/10.1016/j.actbio.2013.02.019

    Article  CAS  Google Scholar 

  19. H.-H. Huang, H.-M. Huang, M.-C. Lin, W. Zhang, Y.-S. Sun, and W. Kai, J. Alloys Compd. 615, S660 (2014). https://doi.org/10.1016/J.JALLCOM.2014.01.098

    Article  CAS  Google Scholar 

  20. H. H. Huang, Y. S. Sun, C. P. Wu, C. F. Liu, P. K. Liaw, and W. Kai, Intermetallics 30, 139 (2012). https://doi.org/10.1016/j.intermet.2012.03.015

    Article  CAS  Google Scholar 

  21. L. Liu, Z. Liu, K. Chan, H. Luo, Q. Cai, and S. Zhang, Scr. Mater. 58, 231 (2008). https://doi.org/10.1016/J.SCRIPTAMAT.2007.09.040

    Article  CAS  Google Scholar 

  22. Q. Jiang, C. Qin, K. Amiya, S. Nagata, A. Inoue, R. Zheng, G. Cheng, X. Nie, and J. Jiang, Intermetallics 16, 225 (2008). https://doi.org/10.1016/j.intermet.2007.09.009

    Article  CAS  Google Scholar 

  23. V. Schroeder and R. Ritchie, Acta Mater. 54, 1785 (2006). https://doi.org/10.1016/j.actamat.2005.12.006

    Article  CAS  Google Scholar 

  24. A. Kawashima, H. Kurishita, H. Kimura, and A. Inoue, Mater. Trans. 48, 1969 (2007). https://doi.org/10.2320/matertrans.mrp2007085

    Article  CAS  Google Scholar 

  25. A. Kawashima, Y. Yokoyama, and A. Inoue, Corros. Sci. 52, 2950 (2010). https://doi.org/10.1016/j.corsci.2010.05.007

    Article  CAS  Google Scholar 

  26. Y. Yokoyama, K. Fujita, A. Yavari, and A. Inoue, Philos. Mag. Lett. 89, 322 (2009). https://doi.org/10.1080/09500830902873575

    Article  CAS  Google Scholar 

  27. M. B. Ivanov, E. A. Erubaev, I. N. Kuz’menko, and Yu. R. Kolobov, Nauchn. Vedomosti, Ser.: Mat. Fiz. 26 (33), 152 (2013).

    Google Scholar 

  28. H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering (Wiley, Hoboken, 2008).

    Google Scholar 

  29. G. M. Florianovich and E. A. Larchenko, Elektrokhimiya 31, 1227 (1995).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 19-42-680001 p_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.V., Balybin, D.V., Fedorov, V.A. et al. Investigation of the Corrosion Properties of Bulk Amorphous Metal Alloys Based on Zirconium. J. Surf. Investig. 17, 960–965 (2023). https://doi.org/10.1134/S1027451023050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050130

Keywords:

Navigation