Skip to main content
Log in

Some Methods for Improving the Quality of Magnetic Force Microscopy Images

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Some factors affecting the quality of magnetic force microscopy images are considered. Main attention is paid to deterioration of the quality of scans caused by probe contamination. It is shown that contamination can occur both during scanning and during storage of the probe. These two different sources of contamination show up differently in images, and different methods must be used to eliminate them. A likely source of probe contamination is the gel used in probe storage and shipping boxes. The magnetic coating of cantilevers can be a catalyst for a chemical reaction leading to the formation of liquid hydrocarbons. Liquid contaminants act as probe functionalizers. When the probe is moved away from the surface, mechanical bonds can be maintained between them due to molecular chains adsorbed on the probe. Depending on the degree of contamination, the presence of such a bond can lead either to the appearance of stripes in the image of the magnetic structure or to the complete disappearance of magnetic contrast. A modification of the standard procedure for magnetic measurements, i.e., the introduction of an additional withdrawal into the two-pass technique (lift mode), makes it possible to completely eliminate the parasitic influence of this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Martin and H. K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987). https://doi.org/10.1063/1.97800

    Article  Google Scholar 

  2. J. J. Sáenz, N. García, P. Grütter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H. R. Hidber, and H.-J. Güntherodt, J. Appl. Phys. 62, 4293 (1987). https://doi.org/10.1063/1.339105

    Article  Google Scholar 

  3. Magnetic Microscopy of Nanostructures, Ed. by H. Hopster and H. P. Oepen, NanoScience and Technology (Springer, Berlin, 2005).

  4. D. Vokoun, S. Samal, and I. Stachiv, Magnetochemistry 8, 42 (2022). https://doi.org/10.3390/magnetochemistry8040042

    Article  Google Scholar 

  5. O. Kazakova, R. Puttock, C. Barton, H. Corte-Leon, M. Jaafar, V. Neu, and A. Asenjo, J. Appl. Phys. 125, 060901 (2019). https://doi.org/10.1063/1.5050712

    Article  CAS  Google Scholar 

  6. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/physrevlett.56.930

    Article  CAS  Google Scholar 

  7. Noncontact Atomic Force Microscopy, Ed. by S. Morita, R. Wiesendanger, E. Meyer, NanoScience and Technology (Springer, Berlin, 2002). https://doi.org/10.1007/978-3-642-56019-4

  8. R. Garcia, Amplitude Modulation Atomic Force Microscopy (Wiley, Weinheim, 2010). https://doi.org/10.1002/9783527632183

  9. Magneto-Optics, Ed. by S. Sugano and N. Kojima, Springer Series in Solid-State Sciences, Vol. 128 (Springer, Berlin, 2000).

  10. A. Kimel, et al., J. Phys. D: Appl. Phys 55, 463003 (2022). J. Phys. D: Appl. Phys. 55, 463003 (2022). https://doi.org/10.1088/1361-6463/ac8da0

    Article  Google Scholar 

  11. J. N. Chapman, J. Phys. D.: Appl. Phys. 17, 623 (1984). https://doi.org/10.1088/0022-3727/17/4/003

    Article  CAS  Google Scholar 

  12. T. Jin, K. Lingyao, W. Weiwei, D. Haifeng, and T. Mingliang, Chin. Phys. B 28, 087503 (2019). https://doi.org/10.1088/1674-1056/28/8/087503

    Article  CAS  Google Scholar 

  13. X. Zhang, K. Nguyen, E. Turgut, Z. Chen, C. Chang, Y. Shao, G. Fuchs, and D. Muller, Microscopy Microanalysis 28, 1698 (2022). https://doi.org/10.1017/S1431927622006742

    Article  Google Scholar 

  14. H. J. Mamin, D. Rugar, J. E. Stern, R. E. Fontana, Jr., and P. Kasiraj, Appl. Phys. Lett. 55, 318 (1989). https://doi.org/10.1063/1.101898

    Article  CAS  Google Scholar 

  15. T. Zhao, C. Hou, H. Fujiwara, H. Cho, J. W. Harrell, and A. Khapikov, J. Appl. Phys. 87, 6484 (2000). https://doi.org/10.1063/1.372745

    Article  CAS  Google Scholar 

  16. P. Grütter, Y. Liu, P. Le Blanc, and U. Dürig, Appl. Phys. Lett. 71, 279 (1997). https://doi.org/10.1063/1.119519

    Article  Google Scholar 

  17. Y. Liu and P. Grütter, J. Appl. Phys. 83, 7333 (1998). https://doi.org/10.1063/1.367825

    Article  CAS  Google Scholar 

  18. A. G. Temiryazev, S. A. Saunin, V. E. Sizov, and M. P. Temiryazeva, Bull. Russ. Acad. Sci.: Phys. 78, 49 (2014). https://doi.org/10.3103/S1062873814010183

    Article  CAS  Google Scholar 

  19. J. C. Gartside, D. M. Burn, L. F. Cohen, and W. R. Branford, Sci. Rep. 6, 32864 (2016). https://doi.org/10.1038/srep32864

    Article  CAS  Google Scholar 

  20. A. V. Zdoroveyshchev, M. V. Dorokhin, O. V. Vikhrova, P. B. Demina, A. V. Kudrin, A. G. Temiryazev, and M. P. Temiryazeva, Phys. Solid State 58, 2267 (2016). https://doi.org/10.1134/S1063783416110391

    Article  CAS  Google Scholar 

  21. A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, O. V. Vikhrova, M. V. Dorokhin, P. B. Demina, and A. V. Kudrin, Phys. Solid State 60, 2200 (2018).https://doi.org/10.1134/S1063783418110318

    Article  CAS  Google Scholar 

  22. J. Yu, J. Ahner, and D. Weller, J. Appl. Phys. 96, 494 (2004). https://doi.org/10.1063/1.1757029

    Article  CAS  Google Scholar 

  23. D. Martínez-Martin, M. Jaafar, R. Pérez, J. Gómez-Herrero, and A. Asenjo, Phys. Rev. Lett. 105, 257203 (2010). https://doi.org/10.1103/PhysRevLett.105.257203

    Article  CAS  Google Scholar 

  24. L. H. Li and Y. Chen, J. Appl. Phys. 116, 213904 (2014). https://doi.org/10.1063/1.4903040

    Article  CAS  Google Scholar 

  25. M. Jaafar, O. Iglesias-Freire, L. Serrano-Ramón, M. R. Ibarra, J. M. de Teresa, and A. Asenjo, Beilstein J. Nanotechnol. 2, 552 (2011). https://doi.org/10.3762/bjnano.2.59

    Article  CAS  Google Scholar 

  26. L. Angeloni, D. Passeri, M. Reggente, D. Mantovani, and M. Rossi, Sci. Rep. 6, 26293 (2016). https://doi.org/10.1038/srep26293

    Article  CAS  Google Scholar 

  27. A. Krivcov, T. Junkers, and H. Möbius, J. Phys. Commun. 2, 075019 (2018). https://doi.org/10.1088/2399-6528/aad3a4

    Article  CAS  Google Scholar 

  28. M. Fuhrmann, A. Musyanovych, R. Thoelen, S. von Bomhard, and H. Mobius, Nanomaterials 10, 2486 2020). https://doi.org/10.3390/nano10122486

    Article  CAS  Google Scholar 

  29. A. G. Temiryazev, V. I. Borisov, and S. A. Saunin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 708 (2014). https://doi.org/10.1134/S1027451014030161

    Article  CAS  Google Scholar 

  30. A. G. Temiryazev, A. V. Krayev, and M. P. Temiryazeva, Beilstein J. Nanotechnol. 12, 1226 (2021). https://doi.org/10.3762/bjnano.12.90

    Article  CAS  Google Scholar 

  31. L. Sirghi, O. Kylián, D. Gilliland, G. Ceccone, and F. Rossi, J. Phys. Chem. B 110, 25975 (2006). https://doi.org/10.1021/jp063327g

    Article  CAS  Google Scholar 

  32. A. V. Ievlev, C. Brown, M. J. Burch, J. C. Agar, G. A. Velarde, L. W. Martin, P. Maksymovych, S. V. Kalinin, and O. S. Ovchinnikova, Anal. Chem. 90, 3475 (2018). https://doi.org/10.1021/acs.analchem.7b05225

    Article  CAS  Google Scholar 

  33. V. Z. Mordkovich, L. V. Sineva, E. V. Kul’chakovaskaya, and E. Yu. Asalieva, Katal. Prom-sti 15 (5), 23 (2015). https://doi.org/10.18412/1816-0387-2015-5-23-45

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the framework of the state task of the Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Temiryazev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiryazev, A.G., Temiryazeva, M.P. Some Methods for Improving the Quality of Magnetic Force Microscopy Images. J. Surf. Investig. 17, 1022–1027 (2023). https://doi.org/10.1134/S1027451023050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050129

Keywords:

Navigation