Skip to main content
Log in

Investigation of the Biodistribution of Gd0.5La0.5F3:Eu Nanoparticles in the Internal Tissues of Laboratory Mice Using X-Ray Computed Tomography and X-Ray Fluorescence Analysis

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The biodistribution of nanoparticles of Gd0.5La0.5F3:Eu(15%) X-ray phosphor in the body and tissues of internal organs of balb/c laboratory mice is studied. The Gd0.5La0.5F3:Eu(15%) nanoparticles are obtained by hydrothermal synthesis at 250°С for 24 h. Using X-ray powder diffraction, transmission electron microscopy, and dynamic light scattering, it is shown that a hexagonal phase is formed in the resulting sample and the average size of nanoparticles varies in the range from 30 to 40 nm. In vivo experiments show that with the intravenous administration of an aqueous solution of nanoparticles, the drug is accumulated mainly in the liver and spleen and the maximum concentration is reached during the first day. The results of post-mortem analysis of tissues using micro-computed tomography (CT) show that the nanoparticles form conglomerates; their distribution over the volume of the organ is homogeneous. The X-ray fluorescence analysis of liver- and spleen-tissue fragments allows for elemental analysis and mapping. The distribution maps of heavy elements in the composition of nanoparticles (Gd, La, Eu) are similar to Fe distribution maps, which indicates the uniform distribution of Gd0.5La0.5F3:Eu(15%) nanoparticles in the pulp of the internal tissues of the liver and spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Kandasamy and D. Maity, Mater. Sci. Eng., C 127, 112199 (2021). https://doi.org/10.1016/j.msec.2021.112199

    Article  CAS  Google Scholar 

  2. W. Chen and J. Zhang, J. Nanosci. Nanotechnol. 6, 1159 (2006). https://doi.org/10.1166/jnn.2006.327

    Article  CAS  Google Scholar 

  3. X.-D. Ren, X.-Y. Hao, H.-C. Li, M.-R. Ke, B.‑Y. Zheng, and J.-D. Huang, Drug Discovery Today 23, 1791 (2018). https://doi.org/10.1016/j.drudis.2018.05.029

    Article  CAS  Google Scholar 

  4. W. Fan, W. Tang, J. Lau, Z. Shen, J. Xie, J. Shi, X. Chen, Adv. Mater. 31, 1806381 (2019). https://doi.org/10.1002/adma.201806381

    Article  CAS  Google Scholar 

  5. O. Shapoval, O. Kaman, J. Hromadkova, D. Vavrik, D. Jirak, D. Machova, J. Parnica, and D. Horak, ChemPlusChem 84, 1135 (2019). https://doi.org/10.1002/cplu.201900352

    Article  CAS  Google Scholar 

  6. T. Grzyb, M. Runowski, and S. Lis, J. Lumin. 154, 479 (2014). https://doi.org/10.1016/j.jlumin.2014.05.020

    Article  CAS  Google Scholar 

  7. A. H. Elmenoufy, Y. Tang, J. Hu, H. Xu, and X. Yang, Chem. Commun. 51, 12247 (2015). https://doi.org/10.1039/c5cc04135j

    Article  CAS  Google Scholar 

  8. P. O. Maksimchuk, K. O. Hubenko, I. I. Bespalova, A. V. Sorokin, I. A. Borovoy, and S. L. Yefimova, J. Mol. Liq. 330, 115653 (2021). https://doi.org/10.1016/j.molliq.2021.115653

    Article  CAS  Google Scholar 

  9. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, CA Cancer J. Clin. 61, 250 (2011). https://doi.org/10.3322/caac.20114

    Article  Google Scholar 

  10. A. Kamkaew, F. Chen, Y. Zhan, R. L. Majewski, and W. Cai, ACS Nano 10, 3918 (2016). https://doi.org/10.1021/acsnano.6b01401

    Article  CAS  Google Scholar 

  11. Y. Tang, J. Hu, A. H. Elmenoufy, and X. Yang, ACS Appl. Mater. Interfaces 7, 12261 (2015). https://doi.org/10.1021/acsami.5b03067

    Article  CAS  Google Scholar 

  12. C. Liang, Z. Wang, Y. Zhang, W. Duan, W. Yue, Y. Ding, and W. Wei, CrystEngComm 16, 4963 (2014). https://doi.org/10.1039/c3ce42629g

    Article  CAS  Google Scholar 

  13. O. E. Polozhentsev, I. A. Pankin, D. V. Khodakova, P. V. Medvedev, A. S. Goncharova, A. Y. Maksimov, O. I. Kit, and A. V. Soldatov, Materials 15, 569 (2022). https://doi.org/10.3390/ma15020569

    Article  CAS  Google Scholar 

  14. O. Shapoval, O. Kaman, J. Hromadkova, D. Vavrik, D. Jirak, D. Machova, J. Parnica, and D. Horak, ChemPlusChem 84, 1135 (2019). https://doi.org/10.1002/cplu.201900352

    Article  CAS  Google Scholar 

  15. Y. Wang, J. Wang, D. Zhu, Y. Wang, G. Qing, Y. Zhang, and X.-J. Liang, Acta Pharm. Sin. B 11, 886 (2021). https://doi.org/10.1016/j.apsb.2021.03.007

    Article  CAS  Google Scholar 

  16. B. Mahaling, M. Verma, G. Mishra, S. Chaudhuri, D. Dutta, and S. Sivakumar, Nanotoxicology 14, 577 (2020). https://doi.org/10.1080/17435390.2019.1708494

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 19-15-00305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Polozhentsev.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polozhentsev, O.E., Khodakova, D.V., Goncharova, A.S. et al. Investigation of the Biodistribution of Gd0.5La0.5F3:Eu Nanoparticles in the Internal Tissues of Laboratory Mice Using X-Ray Computed Tomography and X-Ray Fluorescence Analysis. J. Surf. Investig. 17, 947–953 (2023). https://doi.org/10.1134/S1027451023050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050099

Keywords:

Navigation