Skip to main content
Log in

Hybrid Quadrupole Lens for the Focusing Channel of the DARIA Complex

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of synthesis and electromagnetic calculation of a hybrid quadrupole lens for a proton linear accelerator of the DARIA compact neutron source are presented. The lens includes a permanent magnet quadrupole with a fixed magnetic field gradient and an auxiliary electromagnetic quadrupole excited by a pulsed current. The permanent magnet quadrupole is made of a radiation resistant rare-earth magnet and the electromagnetic quadrupole is designed to compensate for permanent magnet magnetization losses resulting from radiation degradation as neutron fluence accumulates during accelerator operation. A hybrid quadrupole lens can be applied for fast adjustment of the focusing channel as well as for transporting the accelerated ion beams with different ion mass-to-charge ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. A. Pavlov, P. I. Konik, N. A. Kovalenko, V. V. Subbotina, A. E. Pavlova, S. V. Grigorev, T. V. Kulevoy, and D. A. Serebrennikov, Crystallogr. Rep. 67, 3 (2022). https://doi.org/10.1134/S1063774522010096

    Article  CAS  Google Scholar 

  2. I. M. Kapchinskii, Prib. Tekh. Eksp., No. 4, 23 (1977).

  3. G. Kropachev, T. Kulevoy, and A. Sitnikov, J. Surf. Invest.: X-ray, Synchrotron, Neutron Tech. 13, 1126 (2019). https://doi.org/10.1134/S1027451019060399

    Article  CAS  Google Scholar 

  4. A. N. Gerberg, S. B. Mukho, Ya. D. Rabinovich, and V. S. Skachkov, Prib. Tekh. Eksp., No. 1, 49 (1980).

  5. I. M. Kapchinskiy, V. S. Skachkov, A. M. Kozodaev, V. V. Kurakin, R. P. Kuybida, N. V. Lazarev, E. A. Levashova, A. P. Preobragenskij, A. V. Selin, R. M. Vengrov, and V. L. Zuev, in Proc. Conf. EPAC-1989 (Chicago, 1989), Vol. 2, p. 1073.

  6. A. B. Al’tman, A. N. Gerberg, P. A. Gladyshev, et al., Permanent Magnets: Handbook, Ed. by Yu. M. Pyatin (Energiya, Moscow, 1980) [in Russian].

    Google Scholar 

  7. E. W. Blackmore, IEEE Trans. Nucl. Sci. 32, 3669 (1985).

    Article  Google Scholar 

  8. J. R. Cost and R. D. Brown, Preprint No. LA-UR-88-4263 (Los Alamos, 1988).

  9. A. A. Drozdovsky, in Proc. Conf. EPAC 96 (Barcelona, 1996), Vol. 2, p. 2621.

  10. Ya. D. Rabinovich, USSR Inventor’s Certificate No. 662979, Byull. Izobret., No. 18 (1979).

  11. K. Halbach, IEEE Trans. Nucl. Sci. 26, 3882 (1979).

    Article  Google Scholar 

  12. V. S. Skachkov, Preprint No. 76 (Inst. Theor. Exp. Phys., Moscow, 1979).

  13. A. Kantsyrev, A. Golubev, A. Bogdanov, A. Semennikov, Vl. Skachkov, Vic. Skachkov, O. Sergeeva, V. Panyushkin, D. Varentsov, K. Weyrich, P. Lang, L. Shestov, S. Udrea, M. Rodionova, and D. H. H. Hoffmann, Proc. 4th Int. Workshop on High Energy Proton Microscopy (Darmstadt, 2013). http://www-aix.gsi.de/conferences/HEPM2013/talks/ Jul16-1215_Kantsyrev.pdf

  14. Vl. Skachkov, A. Kozlov, G. Kropachev, T. Kulevoy, D. Liakin, O. Sergeeva, Vic. Skachkov, and Yu. Stasevich, Proc. Conf. IPAC-2021 (Campinas, 2021), p. 4359. https://doi.org/10.18429/JACoW-IPAC2021-THPAB286

  15. V. K. Plotnikov, Prib. Tekh. Eksp., No. 2, 29 (1962).

  16. G. V. Badalyan, Zh. Tekh. Fiz. 33, 345 (1963).

    Google Scholar 

  17. S. V. Skachkov, Prib. Tekh. Eksp., No. 5, 31 (1973).

  18. S. V. Skachkov, Prib. Tekh. Eksp., No. 6, 32 (1974).

  19. V. S. Skachkov, Preprint No. 178 (Inst. Theor. Exp. Phys., Moscow, 1984).

  20. V. S. Skachkov, J. Nucl. Instrum. Methods Phys. Res., Sect. A 500, 43 (2003). https://doi.org/10.1016/S0168-9002(02)01991-5

    Article  CAS  Google Scholar 

  21. V. S. Skachkov, A. N. Ermakov, and V. I. Shvedunov, J. Nucl. Instrum. Methods Phys. Res., Sect. A 240, 39 (2004). https://doi.org/10.1016/j.nima.2004.01.051

    Article  CAS  Google Scholar 

  22. V. S. Skachkov and G. A. Novikov, J. Nucl. Instrum. Methods Phys. Res., Sect. A 526, 199 (2003). https://doi.org/10.1016/j.nima.2004.02.019

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement no. 075-15-2022-830 dated May 27, 2022 (continuation of Agreement no. 075-15-2021-1358 dated October 12, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kilmetova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilmetova, I.V., Kozlov, A.V., Kropachev, G.N. et al. Hybrid Quadrupole Lens for the Focusing Channel of the DARIA Complex. J. Surf. Investig. 17, 772–777 (2023). https://doi.org/10.1134/S1027451023040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023040067

Keywords:

Navigation