Skip to main content
Log in

Operando X-ray Diffraction Study of Mn–Ce Catalysts for CO Oxidation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We prepare a series of MnOx–CeO2 catalysts with a molar ratio of Mn : Ce = 3 : 7 by coprecipitation and varying the calcination temperature from 300 to 800°C. The catalysts are characterized by powder X-ray diffraction, low-temperature nitrogen adsorption, and X-ray photoelectron spectroscopy, and the catalytic activity of all samples is tested in the CO oxidation reaction. A (Mn,Ce)O2 solid solution with the fluorite structure forms in all catalysts. Based on the studies performed, a catalyst calcined at 600°C is selected for further studies of the effect of topochemical reduction on the catalytic activity in the CO oxidation reaction by X-ray diffraction in the operando mode. The experiment is carried out sequentially in a stepwise mode: stepwise heating/cooling in a reaction mixture of 1% CO + 2% O2 in the mode 150–175–200–175–150°C (stages 1, 3, and 5); reduction of the sample in a mixture of 10% CO + He at 400°C (stage 2); reduction of the sample in a mixture of 10% H2 + He at 400°С (stage 4). The reductive treatment leads to segregation of the initial (Mn,Ce)O2 solid solution and the appearance of dispersed manganese oxides on the surface, while enrichment of the surface with manganese oxide increases its activity in the CO oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Kousi, C. Tang, I. S. Metcalfe, et al., Small 17, 2006479 (2021). http://www.doi.org/10.1002/smll.202006479.2

    Article  CAS  Google Scholar 

  2. D. Neagu, G. Tsekouras, D. N. Miller, et al., Nat. Chem. 5, 916 (2013). http://www.doi.org/10.1038/nchem.1773

    Article  CAS  Google Scholar 

  3. M. Chanthanumataporn, J. Hui, X. Yue, et al., Electrochim. Acta 306, 159 (2019). http://www.doi.org/10.1016/j.electacta.2019.03.126

    Article  CAS  Google Scholar 

  4. J. Tan, D. Lee, J. Ahn, et al., J. Mater. Chem. A 6, 18133 (2018). http://www.doi.org/10.1039/C8TA05978K

    Article  CAS  Google Scholar 

  5. S. -K. Otto, K. Kousi, D. Neagu, et al., ACS Appl. Energy Mater. 2, 7288 (2019). http://www.doi.org/10.1021/acsaem.9b01267

    CAS  Google Scholar 

  6. J. Myung, D. Neagu, D. N. Miller, et al., Nature 537, 528 (2016). http://www.doi.org/10.1038/nature19090

    Article  CAS  Google Scholar 

  7. D. Neagu, T.-S. Oh, D. N. Miller, et al., Nat. Commun. 6, 8120 (2015). http://www.doi.org/10.1038/ncomms9120

    Article  Google Scholar 

  8. Y. Nishihata, J. Mizuki, T. Akao, et al., Nature 418, 164 (2002). http://www.doi.org/10.1038/nature00893

    Article  CAS  Google Scholar 

  9. O. A. Bulavchenko, Z. S. Vinokurov, T. N. Afonasenko, et al., Dalton Trans. 44, 15499 (2015). http://www.doi.org/10.1039/C5DT01440A

    Article  CAS  Google Scholar 

  10. O. A. Bulavchenko, Z. S. Vinokurov, T. N. Afonasenko, et al., Mater. Lett. 258, 126768 (2020). http://www.doi.org/10.1016/j.matlet.2019.126768

    Article  CAS  Google Scholar 

  11. O. A. Bulavchenko, Z. S. Vinokurov, T. N. Afonasenko, et al., Mater. Lett. 315, 131961 (2022). http://www.doi.org/10.1016/j.matlet.2022.131961

    Article  CAS  Google Scholar 

  12. S. Gates-Rector and T. Blanton, Powder Diffr. 34, 352 (2019). http://www.doi.org/10.1017/S0885715619000812

    Article  CAS  Google Scholar 

  13. L. Lutterotti, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010). http://www.doi.org/10.1016/j.nimb.2009.09.053

  14. G. Qi and R. T. Yang, J. Phys. Chem. B 108, 15738 (2004). http://www.doi.org/10.1021/jp048431h

    Article  CAS  Google Scholar 

  15. K. Frey, V. Iablokov, G. Safran, J. Osan, et al., J. Catal. 287, 30 (2012). http://www.doi.org/10.1016/j.jcat.2011.11.014

    Article  CAS  Google Scholar 

  16. G. Feng, W. Han, Z. Wang, et al., Catalysts 8, 535 (2018). http://www.doi.org/10.3390/catal8110535

    Article  Google Scholar 

  17. L. Zhang, G. Spezzati, V. Muravev, et al., ACS Catal. 11, 5614 (2021). http://www.doi.org/10.1021/acscatal.1c00564

    Article  CAS  Google Scholar 

  18. S. Watanabe, X. Ma, and C. Song, J. Phys. Chem. C 113, 14249 (2009). http://www.doi.org/10.1021/jp8110309

    Article  CAS  Google Scholar 

  19. E. R. Stobbe, B. A. de Boer, and J. W. Geus, Catal. Today 47, 161 (1999). http://www.doi.org/10.1016/S0920-5861(98)00296-X

    Article  CAS  Google Scholar 

  20. S. M. Lee, K. H. Park, S. S. Kim, et al., J. Air Waste Manage. Assoc. 62, 1085 (2012). http://www.doi.org/10.1080/10962247.2012.696532

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using equipment of the Center for Collective Use National Center for the Study of Catalysts.

Funding

This work was supported by the Russian Science Foundation, grant no. 21-73-10 218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Vinokurov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, Z.S., Afonasenko, T.N., Mishchenko, D.D. et al. Operando X-ray Diffraction Study of Mn–Ce Catalysts for CO Oxidation. J. Surf. Investig. 17, 694–700 (2023). https://doi.org/10.1134/S1027451023030345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030345

Keywords:

Navigation