Skip to main content
Log in

Properties and Prospects for the Application of Lithium Liquid Glass in the Thermal Control Coatings of Spacecraft

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comparative study is carried out concerning the radiation resistance of the optical properties of binders for thermal control coatings of spacecraft: widely sold liquid glass K2SiO3 and newly developed liquid glass Li2SiO3. In the case of analysis of diffuse reflectance spectra (ρλ) in the wavelength range 0.2–2.5 μm and the integral radiation-absorption coefficient (as) both before and after electron irradiation, an incomparably higher radiation resistance of Li2SiO3 liquid glass compared to K2SiO3 glass is established. The values of the change in the absorption coefficient ∆as of liquid glass Li2SiO3 comparing to that of K2SiO3 liquid glass are several times less: for electron irradiation with an estimate of 30 keV at a fluence of Ф = 2 × 1016 cm–2, it is 35 times; at Ф = 4 × 1016 cm–2, it is 25 times; and at Ф = 6 × 1016 cm–2, it is 7 times. Analysis of the factors that determine the radiation resistance of these glasses is performed. The advantage of the radiation resistance of Li2SiO3 liquid glass makes it promising for use as binding compounds in the thermal control coatings of spacecraft, in paints, ceramics and other areas of technology and industry with the presence of ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. M. Mikhailov, Reflection Spectra of Thermoregulating Coatings of Spacecrafts, Vol. 1 (Tomsk. Gos. Univ., Tomsk, 2007) [in Russian].

    Google Scholar 

  2. Kompozit Thermal Control Coatings: Nonmetallic Materials. https://kompozit-mv.ru/index.php/nemetallicheskie-materialy/lakokrasochnye-termoreguliruyushchie-pokrytiya.html. Cited September 16, 2022.

  3. S. V. Tokar’ and O. P. Barinova, Tekh. Tekhnol. Silik. 26, 6 (2019).

    Google Scholar 

  4. L. G. Kositsyn, M. M. Mikhailov, N. Y. Kuznetsov, and M. I. Dvoretskii, Instrum. Exp. Tech. 28, 929 (1985).

    Google Scholar 

  5. D. A. Burns and E. W. Ciurczak, Handbook of Near-Infrared Analysis (Marcel Dekker, New York, 2001).

    Book  Google Scholar 

  6. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. Pezuela, Analyst 123, 135 (1998). http://www.doi.org/10.1039/A802531B

    Article  Google Scholar 

  7. G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C. C. Ling, C. K. So, D. Schulz, and D. Klimm, Phys. Rev. B 79, 115212 (2009). http://www.doi.org/10.1103/PhysRevB.79.115212

    Article  Google Scholar 

  8. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley, Chichester, 2003).

    Book  Google Scholar 

  9. F. Boccuzzi, C. Morterra, R. Scala, and A. Zecchina, J. Chem. Soc., Faraday Trans. 2 77, 2059 (1981). http://www.doi.org/10.1039/F29817702059

    Article  CAS  Google Scholar 

  10. B. M. Keyes, L. M. Gedvilas, X. Li, and T. J. Coutts, J. Crystal Growth 281, 297 (2005). http://www.doi.org/10.1016/j.jcrysgro.2005.04.053

    Article  CAS  Google Scholar 

  11. H. Noei, H. Qiu, Y. Wang, E. Löffler, C. Wöll, and M. Muhler, Phys. Chem. Chem. Phys. 10, 7092 (2008). http://www.doi.org/10.1039/b811029h

    Article  CAS  Google Scholar 

  12. C. D. Cooper and J. F. Mustard, Icarus 142, 557 (1999). http://www.doi.org/10.1006/icar.1999.6221

    Article  CAS  Google Scholar 

  13. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978; Mir, Moscow, 1981).

  14. N. T. Shardakov, Glass Phys. Chem. 47, 548 (2021). http://www.doi.org/10.1134/S1087659621060250

    Article  CAS  Google Scholar 

  15. F. S. Johnson, J. Meteorol. 11, 431 (1954).

    Article  Google Scholar 

  16. ASTM E490-00a: Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (2005).

  17. ASTM E903-96: Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres (2005).

  18. V. M. Vladimirov and M. M. Mikhailov, RF Patent No. 2 160 294 (2000).

  19. V. V. Neshchimenko, Doctoral Dissertation in Mathematics and Physics (Tomsk State Univ. Control Syst. Radioelectron., Tomsk, 2017).

  20. R. Hong, T. Pan, J. Qian, and H. Li, Chem. Eng. J. 119, 71 (2006). http://www.doi.org/10.1016/j.cej.2006.03.003

    Article  CAS  Google Scholar 

  21. E. A. Makarova and A. V. Kharitonov, Solar Energy Distribution and Solar Constant (Nauka, Moscow, 1972) [in Russian]

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, the Strategic Academic Leadership Program “Priority 2030”, the project “Space Sciences and Engineering”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Mikhailov or A. N. Lapin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.M., Lapin, A.N., Yuryev, S.A. et al. Properties and Prospects for the Application of Lithium Liquid Glass in the Thermal Control Coatings of Spacecraft. J. Surf. Investig. 17, 568–573 (2023). https://doi.org/10.1134/S1027451023030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030126

Keywords:

Navigation