Skip to main content
Log in

Abstract

Carbon fibers are used in the production of automobiles, airplanes, sporting goods, energy, and biomedicine due to their unique properties such as high specific strength, high specific stiffness, low coefficient of thermal expansion, and low density. The research and development of both the technology of carbon-fiber production and their modification for a wide range of applications have been and remain relevant. The summary of accumulated experience in the modification of carbon fibers shows that ion-beam processing allows a variety of geometries of the developed surface topography, in particular, whisker-shaped and corrugated, oriented across or along the fiber, to be obtained. Such processing compares favorably with the usual whiskering of fibers both in terms of the variety of geometries of the composite interface, and by the absence of the problem of whisker-fiber adhesion. Ion-beam processing also makes it possible to modify the surface-layer structure from amorphized to ordered with different degrees of graphitization. Irradiation with chemically active ions leads to the functionalization of carbon fibers due to the formation, for example, of nitrides and carbon oxides. The choice of nitrogen ions for the technology of carbon-carbon and carbon-ceramic composites seems to be more preferable due to less stringent requirements for the temperature of the irradiated fiber. For the ion-beam corrugation of the surface of a polyacrylonitrile-based carbon fiber, only its heating above the temperature of dynamic annealing of the radiation damage is required. The use of helium ions in technological plasma-acceleration systems leads to a significant increase in the efficiency of ion-beam processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. V. G. Nagornyi, A. S. Kotosonov, V. S. Ostrovskii, B. K. Dymov, A. I. Lutkov, Yu. P. Anufriev, V. N. Barabanov, V. D. Belogorskii, A. F. Kuteinikov, Yu. S. Virgil’ev, and G. A. Sokker, Properties of Structural Materials Based on Carbon: Handbook, Ed. by V. P. Sosedova (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  2. V. S. Ostrovskii, Yu. S. Virgil’ev, V. I. Kostikov, and N. N. Shipkov, Artificial Graphite (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  3. Carbon Fibres and Their Composites, Ed. by E. Fitzer (Springer, Heidelberg, 1985; Mir, Moscow, 1988).

  4. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Graphite Fibers and Filaments, Springer Series in Materials Science, Vol. 5 (Springer, Heidelberg, 1988). https://www.doi.org/10.1007/978-3-642-83379-3

  5. H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes, Park Ridge NJ, 1993).

    Google Scholar 

  6. A. S. Fialkov, Carbon, Interlayer Compounds, and Composites Based on It (Aspekt, Moscow, 1997) [in Russian].

    Google Scholar 

  7. Yu. S. Virgil’ev and I. P. Kalyagina, Inorg. Mater. 40 (suppl. 1), S33 (2004). https://www.doi.org/10.1023/B:INMA.0000036327. 90241.5a

    Article  Google Scholar 

  8. V. Ya. Varshavskii, Carbon Fibers (Varshavskii, Moswcow, 2007) [in Russian].

  9. F. L. Matthews and R. D. Rawlings, Composite Materials: Engineering and Science (Woodhead, London, 1999; Tekhnosfera, Moscow, 2004).

  10. R. F. Gibson, Compos. Struct. 92, 2793 (2010). https://www.doi.org/10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  11. A. I. Meleshko and S. P. Polovnikov, Carbon, Carbon Fibers, Carbon Composites (SAIN-PRESS, Moscow, 2007) [in Russian].

    Google Scholar 

  12. G. Yun, S.-Y. Tang, H. Lu, S. Zhang, M. D. Dickey, and W. Li, Small Sci. 1, 2000080 (2021). https://www.doi.org/ 10.1002/smsc.202000080

  13. N. M. Chernenko, Perspekt. Mater., No. 6, 78 (1999).

  14. N. M. Chernenko, Modern Problems of Production and Exploitation of Carbon Products (Biblioteka Millera, Chelyabinsk, 2000) [in Russian].

    Google Scholar 

  15. D. N. Chernenko, N. M. Chernenko T. S. Shcherbakova and I. G. Grudina, RF Patent No. 2684538 (2019).

  16. R. J. Sager, P. J. Klein, D. C. Lagoudas, Q. Zhang, J. Liu, and L. Dai, Compos. Sci. Technol. 69, 898 (2009). https://www.doi.org/10.1016/j.compscitech.2008.12.021

    Article  CAS  Google Scholar 

  17. E. J. Garcia, B. L. Wardle, A. J. Hart, and N. Yamamonj, Compos. Sci. Technol. 68, 2034 (2008). https://www.doi.org/10.1016/j.compscitech.2008.02.028

    Article  CAS  Google Scholar 

  18. S. P. Sharma and S. C. Lakkad, Surf. Coat. Technol. 201, 350 (2010). https://www.doi.org/10.1016/j.surfcoat.2010.06.055

  19. S. S. Wickss, R. Guzman, and B. L. Wardle, Compos. Sci. Technol. 70, 20 (2010). https://www.doi.org/10.1016/j.compscitech.2009.09.001

    Article  Google Scholar 

  20. Q. Song, K.-Z. Li, H.-L. Li, H.-J. Li, and R. Chang, Carbon 50, 3949 (2012). https://www.doi.org/10.1016/j.carbon.2012.03.023

    Article  CAS  Google Scholar 

  21. S. Wu, Y. Liu, Y. Ge, L. Ran, K. Peng, and M. Yi, Composites, Part A 90, 480 (2016). https://www.doi.org/10.1016/j.compositesa.2016.08.023

    Article  CAS  Google Scholar 

  22. I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, Science 362, 547 (2018). https://www.doi.org/10.1126/science.aat7439.

    Article  CAS  Google Scholar 

  23. N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013). https://www.doi.org/10.1016/j.apsusc.2012.12.162

    Article  CAS  Google Scholar 

  24. E. A. Vorobyeva, I. V. Makarenko, A. V. Makunin, V. A. Trifonov, and N. G. Chechenin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 784 (2015). https://doi.org/10.1134/S1027451015040370

    Article  CAS  Google Scholar 

  25. V. A. Kobzev, N. G. Chechenin, K. A. Bukunov, E. A. Vorobyeva, and A. V. Makunin, Mater. Today: Proc. 5, 26096 (2018). https://www.doi.org/10.1016/j.matpr.2018.08.036

  26. K. D. Kushkina, A. A. Shemukhin, E. A. Vorobyeva, K. A. Bukunov, A. P. Evseev, A. A. Tatarintsev, K. I. Maslakov, N. G. Chechenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 11 (2018). https://www.doi.org/10.1016/j.nimb.2018.05.038

  27. L. S. Novikov, E. N. Voronina, V. N. Chernik, N. G. Chechenin, A. V. Makunin, and E. A. Vorobieva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 617 (2016). https://doi.org/10.1134/S1027451016030307

    Article  CAS  Google Scholar 

  28. E. A. Vorobyeva, N. G. Chechenin, I. V. Makarenko, and A. V. Kepman, J. Composites Sci. 1, 6 (2017). https://www.doi.org/10.3390/jcs1010006

    Article  Google Scholar 

  29. E. A. Vorobyeva, A. P. Evseev, V. L. Petrov, A. A. Shemukhin, and N. G. Chechenin, Moscow Univ. Phys. Bull. 76, 29 (2021). https://www.doi.org/10.3103/s0027134921010112

    Article  Google Scholar 

  30. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985).

    Google Scholar 

  31. E. A. Ligacheva, L. V. Galyaeva, and N. V. Gavrilov, Fiz. Khim. Obrab. Mater. 1, 46 (2006).

    Google Scholar 

  32. M. V. Ivanov, N. V. Gavrilov, T. A. Belyh, E. A. Ligacheva, L. V. Galijeva, A. E. Ligachev, and V. V. Sohoreva, Surf. Coat. Technol. 201, 8326 (2007). https://www.doi.org/10.1016/j.surfcoat.2006.12.034

  33. N. N. Andrianova, A. M. Borisov, Yu. S. Virgil’ev, E. S. Mashkova, A. S. Nemov, E. A. Pitirimova, and M. A. Timofeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 376 (2008).

    Article  Google Scholar 

  34. N. N. Andrianova, A. M. Borisov, E. C. Mashkova, and Yu. S. Virgiliev, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2778 (2009). https://www.doi.org/10.1016/j.nimb.2009.05.021

  35. V. S. Avilkina, N. N. Andrianova, A. M. Borisov, Yu. S. Virgil’ev, E. S. Mashkova, E. A. Pitirimova, and M. A. Timofeev, Fiz. Khim. Obrab. Mater., No. 5, 21 (2009) [in Russian].

  36. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and Yu. S. Virgiliev, J. Spacecr. Rockets 48, 45 (2011). https://www.doi.org/10.2514/1.49462

    Article  CAS  Google Scholar 

  37. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and Yu. S. Virgiliev, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 861 (2011). https://www.doi.org/10.1016/j.nimb.2010.12.063

  38. V. S. Avilkina, N. N. Andrianova, A. M. Borisov, Yu. S. Virgiliev, and E. S. Mashkova, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 6, 212 (2012).

    Article  CAS  Google Scholar 

  39. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, E. S. Parilis, and Yu. S. Virgiliev, in Horizons in World Physics (Nova Science, New York, 2013), Vol. 280, p. 171.

  40. N. N. Andrianova, A. M. Borisov, Yu. S. Virgiliev, E. S. Mashkova, and D. V. Petrov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 8, 513 (2014).

    Article  CAS  Google Scholar 

  41. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and V. I. Shulga, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 412 (2016).

    Article  CAS  Google Scholar 

  42. V. A. Anikin, A. M. Borisov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, Pribory, No. 12, 46 (2017).

  43. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, E. S. Mashkova, M. A. Ovchinnikov, S. V. Savushkina, and N. M. Chernenko, J. Phys.: Conf. Ser. 941, 012028 (2017). https://www.doi.org/10.1088/1742-6596/941/1/012028

    Google Scholar 

  44. N. N. Andrianova, V. A. Anikin A. M. Borisov, E. S. Mashkova, V. A. Kazakov, M. A. Ovchinnikov, and S. V. Savushkina, Bull. Russ. Acad. Sci.: Phys. 82, 122 (2018).

    Article  CAS  Google Scholar 

  45. V. A. Anikin, A. M. Borisov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, Phys. At. Nucl. 81, 1541 (2018).

    Article  Google Scholar 

  46. A. M. Borisov, N. G. Chechenin, V. A. Kazakov, E. S. Mashkova, and M. A. Ovchinnikov, Nucl. Instrum. Methods Phys. Res., Sect. B 460, 132 (2019). https://www.doi.org/10.1016/j.nimb.2019.03.045

  47. N. N. Andrianova, A. M. Borisov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, J. Phys.: Conf. Ser. 1396, 012003 (2019). https://www.doi.org/10.1088/1742-6596/1396/1/012003

    CAS  Google Scholar 

  48. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 231 (2020).

    Article  CAS  Google Scholar 

  49. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, A. V. Makunin, E. S. Mashkova, and M. A. Ovchinnikov, Bull. Russ. Acad. Sci.: Phys. 84, 707 (2020).

    Article  CAS  Google Scholar 

  50. N. N. Andrianova, V. A. Anikin, A. M. Borisov, V. A. Gorina, A. V. Makunin, E. S. Mashkova, M. A. Ovchinnikov, E. G. Cheblakova, and V. V. Sleptsov, J. Phys.: Conf. Ser. 1313, 012001 (2019). https://www.doi.org/10.1088/1742-6596/1313/1/012001

    CAS  Google Scholar 

  51. N. N. Andrianova, N. Yu. Beylina, A. M. Borisov, E. S. Mashkova, D. N. Chernenko, and N. M. Chernenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 211 (2014).

    Article  CAS  Google Scholar 

  52. N. N. Andrianova, N. Yu. Beilina, A. M. Borisov, E. S. Mashkova, D. N. Chernenko, and N. M. Chernenko, Vakuum. Tekh. Tekhnol. 23, 85 (2014).

    Google Scholar 

  53. A. M. Borisov, A. V. Makunin, E. S. Mashkova, V. A. Kazakov, M. A. Ovchinnikov, and V. V. Sleptsov, J. Phys.: Conf. Ser. 1121, 012008 (2018). https://www.doi.org/10.1088/1742-6596/1121/1/012008.

    Google Scholar 

  54. V. A. Anikin, N. N. Andrianova, A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, S. V. Savushkina, D. N. Chernenko, and N. M. Chernenko, J. Phys.: Conf. Ser. 941, 012029 (2017). https://www.doi.org/:10.1088/1742-6596/941/1/012029

    Google Scholar 

  55. A. M. Borisov, V. A. Gorina, E. S. Mashkova, M. A. Ovchinnikov, E. G. Cheblakova, D. N. Chernenko, and N. M. Chernenko, Mater. Today: Proc. 5, 26058 (2018). https://www.doi.org/10.1016/j.matpr.2018.08.029

  56. N. M. Chernenko, D. N. Chernenko, N. Yu. Beilina, P. G. Elizarov, A. M. Borisov, E. S. Mashkova, and N. N. Andrianova, RF Patent No. 2560362 (2015).

  57. A. M. Borisov, N. N. Andrianova, V. A. Anikin, E. S. Mashkova, M. A. Ovchinnikov, D. N. Chernenko, N. M. Chernenko, and Yu. M. Shul’gina, RF Patent No. 2 689 584 (2019).

  58. A. M. Borisov and E. S. Mashkova, Nucl. Instrum. Methods Phys. Res., Sect. B 258, 109 (2007). https://www.doi.org/10.1016/j.nimb.2006.12.078

  59. A. M. Borisov, Yu. S. Virgil’ev, and E. S. Mashkova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 52 (2008).

    Google Scholar 

  60. P. A. Platonov, Ya. I. Shtrombakh, V. I. Karpukhin, Yu. S. Virgil’ev, O. K. Chugunov, and E. I. Trofimchuk, Atomic Hydrogen Energy and Technology (Energoatomizdat, Moscow, 1984), No. 6, p. 77 [in Russian].

  61. Yu. S. Virgil’ev, T. K. Chugunova, V. G. Makarchenko, and E. V. Murav’eva, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater. 20, 1378 (1984).

    Google Scholar 

  62. N. N. Andrianova, A. M. Borisov, E. A. Vysotina, M. A. Timofeev, E. S. Mashkova, and M. A. Ovchinnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 230 (2021).

    Article  CAS  Google Scholar 

  63. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, M. A. Timofyev, and E. A. Vysotina, Vacuum 188, 110177 (2021). https://www.doi.org/10.1016/j.vacuum.2021.110177

    Article  CAS  Google Scholar 

  64. N. N. Andrianova, A. M. Borisov, A. V. Makunin, E. S. Mashkova, M. A. Ovchinnikov, and E. A. Vysotina, J. Phys.: Conf. Ser. 1713, 012005 (2020). https://www.doi.org/10.1088/1742-6596/1713/1/012005

    Google Scholar 

  65. A. M. Borisov, E. A. Vysotina, E. S. Mashkova, M. A. Timofeev, and M. A. Ovchinnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 211 (2022).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 21-79-30 058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianova, N.N., Borisov, A.M., Mashkova, E.S. et al. Ion-Beam Surface Modification of Carbon Fibers. J. Surf. Investig. 17, 426–439 (2023). https://doi.org/10.1134/S1027451023020210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023020210

Keywords:

Navigation