Skip to main content
Log in

Modification of the Properties of Surface Layers of Aluminum Alloys under the Action of a High-Power Ion Beam

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of a high-power ion beam of nanosecond duration on the stress-strain state of the surface layer of aluminum and its alloys is studied. The data of elemental and phase analysis, residual stresses, sizes of coherent-scattering regions and dislocation density are compared with the microhardness value for different irradiation regimes. A decrease in the lattice parameters of the α phase of aluminum with an increase in the ion current density is found, which indicates the deforming effect of the resulting compressive residual stresses during irradiation with a high-power ion beam. Analysis of the sizes of the coherent-scattering regions in alloys compared with pure aluminum shows a tendency toward their decrease; in D16 alloy grinding occurs by a factor of 1.5, the dislocation density increases by a factor of two, and in V95T alloy, the dislocation density increases by a factor of 3. This trend indicates the significant influence of alloying elements on the dispersion and density of dislocations with varying irradiation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. E. Remnev, V. A. Tarbokov, and S. K. Pavlov, Fiz. Khim. Obrab. Mater., No. 2, 5 (2021). https://doi.org/10.30791/0015-3214-2021-2-5-26

  2. V. A. Gribkov, V. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Perspektivnye radiacionno-puchkovye tekhnologii obrabotki materialov (Kruglyi God, Moscow, 2001) [in Russian].

    Google Scholar 

  3. Surface Modification and Alloying by Laser, Ion, and Electron Beams, Ed. by J. M. Poate, G. Foti, and D. C. Jacobson (Springer, New York, 1983; Mashinostroenie, Moscow, 1987).

  4. G. E. Remnev and A. D. Pogrebnyak, in News of Science and Technology. Ser.: New Materials, Technology of Their Production and Processing (VINITI, Moscow, 1990).

  5. G. E. Remnev, A. D. Pogrebnyak, I. F. Isanov, et al., Fiz. Khim. Obrab. Mater., No. 6, 4 (1987).

  6. S. A. Chistyakov, S. V. Khalikov, and A. P. Yalovets, Zh. Tekh. Fiz. 63, 31 (1993).

    CAS  Google Scholar 

  7. V. S. Kovivchak and T. V. Panova, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 12, 797 (2018). https://doi.org/10.1134/S1027451018040304

    Article  CAS  Google Scholar 

  8. G. F. Shemetev, Aluminum Alloys: Compositions, Properties, Applications: Textbook (St. Petersburg, 2012), part 1, p. 16.

  9. I. A. Abroyan, A. N. Andronov, A. I. Titov, Physical Foundations of Electronic and Ion Technology (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  10. F. F. Komarov, Ion Implantation in Metals (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  11. G. A. Bleikher, V. P. Krivobokov, O. B. Pashchenko, Russ. Phys. J. 40, 181 (1997).

    Article  CAS  Google Scholar 

  12. L. T. Fen’, G. E. Remnev, M. S. Saltymakov, et al., Russ. Phys. J. 50, 66 (2007).

    Article  Google Scholar 

  13. A. D. Korotaev, A. N. Tyumentsev, M. V. Tret’yak, et al., Fiz. Met. Metalloved. 89, 54 (2000).

    CAS  Google Scholar 

  14. V. I. Boiko, A. N. Valyaev, and A. D. Pogrebnyak, Phys.—Usp. 42, 1139 (1999).

    Article  CAS  Google Scholar 

  15. G. E. Remnev, Izv. Tomsl. Politekh. Univ. 303 (2), 59 (2000).

    Google Scholar 

  16. I. P. Chernov, P. A. Beloglazova, E. V. Berezneeva, et al., Tech. Phys. 60, 1039 (2015).

    Article  CAS  Google Scholar 

  17. T. V. Panova and V. S. Kovivchak, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 13, 1098 (2019). https://doi.org/10.1134/S102745101906017X

    Article  CAS  Google Scholar 

  18. V. S. Kovivchak, T. V. Panova, and K. A. Mikhailov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 471 (2017). https://doi.org/10.1134/S102745101702029X

    Article  CAS  Google Scholar 

  19. V. S. Kovivchak, T. V. Panova, K. A. Mikhailov, and E. V. Knyazev, Tech. Phys. Lett. 39, 59 (2013).

    Article  CAS  Google Scholar 

  20. T. V. Panova, V. S. Kovivchak, and K. A. Dokuchaev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 243 (2014). https://doi.org/10.1134/S1027451014020190

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using equipment of the Omsk Regional Center for Collective Use, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Panova.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, T.V., Kovivchak, V.S. Modification of the Properties of Surface Layers of Aluminum Alloys under the Action of a High-Power Ion Beam. J. Surf. Investig. 17, 332–337 (2023). https://doi.org/10.1134/S1027451023020131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023020131

Keywords:

Navigation