Skip to main content
Log in

Effect of Low-Energy Ion Bombardment on the Texture and Microstructure of Platinum Films

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We study the effect of low-energy ion bombardment on the texture and structure of an 80-nm-thick platinum film deposited at room temperature. The film is treated in an inductively coupled Ar plasma with a negative voltage of 45–125 V applied to the samples and an ion-current density of 3.3 mA/cm2. A series of treatments at each voltage results in thinning of the film; after each treatment, its structural parameters are determined by X-ray diffraction analysis and compared with the parameters of Pt films 20–60 nm thick deposited under the same conditions. The treatment at 75–125 V decreases the average size of the coherently diffracting domains by 10–25%; at 45 V, such a decrease is not observed. The results are explained by the formation and accumulation of radiation defects; the rate of their formation is lower at 45 V. Film sputtering in all modes does not worsen the sharpness of the film texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. N. van Wyk, Rad. Eff. Lett. 57, 187 (1981). https://doi.org/10.1080/01422448108226518

    Article  CAS  Google Scholar 

  2. N. Popovic, M. Milic, Z. Bogdanov, and R. Petrovic, Vacuum 40, 149 (1990). https://doi.org/10.1016/0042-207X(90)90142-L

    Article  CAS  Google Scholar 

  3. D. Dobrev, Thin Solid Films 92, 41 (1982). https://doi.org/10.1016/0040-6090(82)90186-9

    Article  CAS  Google Scholar 

  4. M. Marinov and D. Dobrev, Thin Solid Films 42, 265 (1977). https://doi.org/10.1016/0040-6090(77)90361-3

    Article  CAS  Google Scholar 

  5. E. G. Fu, Y. Q. Wang, G. F. Zou, J. Xiong, M. J. Zhuo, Q. M. Wei, J. K. Baldwin, Q. X. Jia, L. Shao, A. Misra, and M. Nastasi, Appl. Phys. A 108, 121 (2012). https://doi.org/10.1007/s00339-012-6865-y

    Article  CAS  Google Scholar 

  6. E. G. Fu, Y. Q. Wang, and M. Nastasi, J. Phys. D 45, 495303 (2012). https://doi.org/10.1088/0022-3727/45/49/495303

    Article  CAS  Google Scholar 

  7. S. Olliges, P. Gruber, A. Bardill, D. Ehrler, H. D. Carstanjen, and R. Spolenak, Acta Mater. 54, 5393 (2006). https://doi.org/10.1016/j.actamat.2006.07.005

    Article  CAS  Google Scholar 

  8. J. Li, J. C. Liu, and J. W. Mayer, Nucl. Instrum. Methods Phys. Res., Sect. B 36, 306 (1989). https://doi.org/10.1016/0168-583X(89)90672-1

    Article  Google Scholar 

  9. J. C. Liu, J. Li, and J. W. Mayer, J. Appl. Phys. 67, 2354 (1990). https://doi.org/10.1063/1.345530

    Article  CAS  Google Scholar 

  10. J. C. Liu, M. Nastasi, and J. W. Mayer, J. Appl. Phys. 62, 423 (1987). https://doi.org/10.1063/1.339815

    Article  CAS  Google Scholar 

  11. D. Kaoumi, A. T. Motta, and R. C. Birtcher, J. ASTM Int. 4, JAI100743 (2007). https://doi.org/10.1520/JAI100743

    Article  Google Scholar 

  12. S. Blazhevich, N. Kamyshanchenko, I. Martynov, and I. Neklyudov, Nucl. Instrum. Methods Phys. Res., Sect. B 193, 312 (2002). https://doi.org/10.1016/S0168-583X(02)00797-8

    Article  CAS  Google Scholar 

  13. H. A. Atwater, C. V. Thompson, and H. I. Smith, J. Appl. Phys. 64, 2337 (1988). https://doi.org/10.1063/1.341665

    Article  CAS  Google Scholar 

  14. D. A. Lilienfeld, P. Borgesen, and P. Meyer, Mat. Res. Soc. Symp., Proc. 235, 571 (1991). https://doi.org/10.1557/PROC-235-571

    Article  Google Scholar 

  15. Y. Hasegawa, Y. Fujimoto, and F. Okuyama, Surf. Sci. Lett. 163, L781 (1985). https://doi.org/10.1016/0167-2584(85)90883-7

    Article  CAS  Google Scholar 

  16. M. D. Naeem, S. M. Rossnagel, and K. Rajan, Mater. Res. Soc. Symp., Proc. 343, 113 (1994). https://doi.org/10.1557/PROC-343-113

    Article  CAS  Google Scholar 

  17. M. D. Naeem, H. J. Leary, and K. Rajan, J. Electron. Mater. 21, 1087 (1992). https://doi.org/10.1007/BF02667598

    Article  CAS  Google Scholar 

  18. W.-L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D. G. Cahill, and R. S. Averback, Phys. Rev. B 77, 205405 (2008). https://doi.org/10.1103/PhysRevB.77.205405

    Article  CAS  Google Scholar 

  19. S. G. Mayr and R. S. Averback, Phys. Rev. B 68, 214105 (2003). https://doi.org/10.1103/PhysRevB.68.214105

    Article  CAS  Google Scholar 

  20. A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, and M. Nastasi, J. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 211 (1999). https://doi.org/10.1016/S0168-583X(98)00780-0

    Article  CAS  Google Scholar 

  21. V. V. Naumov, V. F. Bochkarev, O. S. Trushin, A. A. Goryachev, E. G. Khasanov, A. A. Lebedev, and A. S. Kunitsyn, Tech. Phys. 46, 1020 (2001). https://doi.org/10.1134/1.1395124

    Article  CAS  Google Scholar 

  22. A. S. Babushkin, I. V. Uvarov, and I. I. Amirov, Tech. Phys. 63, 1800 (2018). https://doi.org/10.1134/S1063784218120228

    Article  CAS  Google Scholar 

  23. A. Babushkin, R. Selyukov, and I. Amirov, Proc. SPIE 11022, 1102223 (2019). https://doi.org/10.1117/12.2521617

    Article  Google Scholar 

  24. J., B. Silva, K. C. Sekhar, A. Almeida, MoreiraJ. Agostinho, J. Martin-Sanchez, M. Pereira, A. Khodorov, and J. M. Gomes, J. Appl. Phys. 112, 044105 (2012). https://doi.org/10.1063/1.4748288

  25. K. A. Vorotilov, O. M. Zhigalina, V. A, Vasil’ev, and A. S. Sigov, Phys. Solid State 51, 1337 (2009). https://doi.org/10.1134/S106378340907004X

    Article  CAS  Google Scholar 

  26. E. Mirica, G. Kowach, P. Evans, and H. Du, Cryst. Growth Des. 4, 147 (2004). https://doi.org/10.1021/cg025595j

    Article  CAS  Google Scholar 

  27. I. I. Amirov, M. O. Izyumov, and V. V. Naumov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 855 (2016). https://doi.org/10.1134/S1027451016040236

    Article  CAS  Google Scholar 

  28. Y. Kuru, U. Welzel, and E. J. Mittemeijer, Appl. Phys. Lett. 105, 221902(2014). https://doi.org/10.1063/1.4902940

    Article  CAS  Google Scholar 

  29. K. Abbas, S. Alaie, M. Ghasemi-Baboly, M. M. M. Elahi, D. H. Anjum, S. Chaieb, and Z. C. Leseman, J. Micromech. Microeng. 26, 015007 (2016). https://doi.org/10.1088/0960-1317/26/1/015007

    Article  CAS  Google Scholar 

  30. C. V. Thompson, Annu. Rev. Mater. Sci. 30, 159 (2000). https://doi.org/10.1146/annurev.matsci.30.1.159

    Article  CAS  Google Scholar 

  31. W. E. Sweeney, Jr., R. E. Seebold, and L. S. Birks, J. Appl. Phys. 31, 1061 (1960). https://doi.org/10.1063/1.1735746

    Article  CAS  Google Scholar 

  32. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, Radiography, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  33. R. V. Selyukov, V. V. Naumov, and S. V. Vasilev, Tech. Phys. 63, 900 (2018). https://doi.org/10.1134/S106378421806018X

    Article  CAS  Google Scholar 

  34. G. Palumbo, S. J. Thorne, and K. T. Aust, Scr. Metall. Mater. 24, 1347 (1990). https://doi.org/10.1016/0956-716X(90)90354-J

    Article  CAS  Google Scholar 

  35. T. Yamasaki, Scr. Mater. 44, 1497 (2001). https://doi.org/10.1016/S1359-6462(01)00720-5

    Article  CAS  Google Scholar 

  36. G. Roebben, C. Sarbu, T. Lubec, and O. van der Biest, Mater. Sci. Eng., A 370, 453 (2004). https://doi.org/10.1016/j.msea.2003.05.004

    Article  CAS  Google Scholar 

  37. B. D. Cullity, Elements of X-Ray Diffraction (Addison–Wesley, New York, 1956).

    Google Scholar 

  38. M. F. Malek, M. H. Mamat, Z. Khusaimi, M. Z. Sahdan, M. Z. Musa, A. R. Zainun, A. B. Suriani, N. D. Md Sin, S. B. Abd Hamid, and M. Rusop, J. Alloys Compd. 582, 12 (2014). https://doi.org/10.1016/j.jallcom.2013.07.202

    Article  CAS  Google Scholar 

  39. M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri, I. Raisanen, J. Appl. Phys. 93, 1477 (2003). https://doi.org/10.1063/1.1534381

    Article  CAS  Google Scholar 

  40. S. Heiroth, R. Frison, J. L. M. Rupp, T. Lippert, E. J. B. Meier, E. M. Gubler, M. Dobeli, K. Conder, A. Wokaun, and L. J. Gauckler, Solid State Ionics 191, 12 (2011). https://doi.org/10.1016/j.ssi.2011.04.002

    Article  CAS  Google Scholar 

  41. Proc. FTIAN 28: Quantum Computers, Micro- and Nanoelectronics: Physics, Technology, Diagnostics and Modeling, Ed. by T. M. Makhviladze (Nauka, Moscow, 2019), p. 131.

    Google Scholar 

  42. J. H. Jeffries, J.-K. Zuo, and M. M. Craig, Phys. Rev. Lett. 76, 4931 (1996). https://doi.org/10.1103/PhysRevLett.76.4931

    Article  CAS  Google Scholar 

  43. G. J. Ogilvie, J. Phys. Chem. Solids 10, 222 (1959). https://doi.org/10.1016/0022-3697(59)90079-4

    Article  CAS  Google Scholar 

  44. G. J. Ogilvie and A. A. Thompson, J. Phys. Chem. Solids 17, 203 (1961). https://doi.org/10.1016/0022-3697(61)90184-6

    Article  CAS  Google Scholar 

  45. S. Balaji, P. V. Satyam, V. Lakshminarayanan, and S. Mohan, Nucl. Instrum. Methods Phys. Res., Sect. B 217, 423 (2004). https://doi.org/10.1016/j.nimb.2003.11.080

    Article  CAS  Google Scholar 

Download references

Funding

X-ray and microscopic studies were carried out using equipment of the Facilities Sharing Center “Diagnostics of Microstructures and Nanostructures” with financial support of the Ministry of Science and Higher Education of the Russian Federation. The investigation was supported by program no. FFNN-0022-0018 of the Ministry of Science and Higher Education of Russia for Valiev Institute of Physics and Technology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Selyukov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyukov, R.V., Naumov, V.V., Izyumov, M.O. et al. Effect of Low-Energy Ion Bombardment on the Texture and Microstructure of Platinum Films. J. Surf. Investig. 17, 180–186 (2023). https://doi.org/10.1134/S1027451023010366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023010366

Keywords:

Navigation