Skip to main content
Log in

On the Use of Crystals with an Asymmetric Reflection Geometry to Measure the Parameters of Electron Beams

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The prospects of using crystals with asymmetric reflection geometry to determine the transverse size of relativistic electron beams based on the results of measuring the angular distributions of their radiation in a thin crystal for two distances between it and a coordinate detector are discussed. Experimental testing of this technique is carried out using an imaging plate as a two-dimensional position-sensitive detector. Measurements are made for an electron energy of 255 MeV and the reflection (220) in a silicon crystal with a thickness of 20 microns and a pixel size of 35 µm2. The distances between the crystal and the detector are 0.5 and 1 m. The obtained values of the horizontal and vertical beam sizes \({{\sigma }_{x}} = 0.32 \pm 0.02\,\,~{\text{mm}}\) and \({{\sigma }_{y}} = 1.35 \pm 0.02~\,\,{\text{mm}}\) are in satisfactory agreement with the measurement results for optical transition radiation. The possibility of characterizing X-ray plates by comparing the measured and calculated parametric X‑ray (PXR) angular distributions for several reflecting planes of crystals with an asymmetric reflection geometry and an asymmetry parameter ε less than unity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. R. B. Fiorito, in Proceedings of Particle Accelerator Conference 09 (Vancouver, 2009), p. 741.

  2. The European X-Ray Free-Electron Laser Technical Design Report, DESY 2006-097 (2007).

  3. H. Loos, R. Akre, F.-J. Decker, Y. Ding, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. R. Hays, P. Hering, Z. Huang, R. Iverson, C. Limborg-Deprey, A. Miahnahri, H.-D. Nuhn, J. L. Turner, J. Welch, W. White, J. Wu, and D. Ratner, in Proceedings of FEL08 (Gyeongju, 2008), p. 485.

  4. A. Gogolev, A. Potylitsyn, and G. Kube, J. Phys.: Conf. Ser. 357, 012018 (2012). https://www.doi.org/10.1088/1742-6596/357/1/012018

    Google Scholar 

  5. Y. Takabayashi, Phys. Lett. A 376, 2408 (2012). https://www.doi.org/10.1016/j.physleta.2012.06.001

    Article  CAS  Google Scholar 

  6. Y. Takabayashi and K. Sumitani, Phys. Lett. A 377, 2577 (2013). https://www.doi.org/10.1016/j.physleta.2013.07.035

    Article  CAS  Google Scholar 

  7. G. Kube, C. Behrens, A. S. Gogolev, Yu. P. Popov, A. P. Potylitsyn, W. Lauth, and S. Weisse, in Proceedings of IPAC (2013), p. 491.

  8. I. E. Vnukov, Ya. A. Goponiv, M. A. Sidnin, R. A. Shatokhin, K. Sumitanin, and Y. Takabayashi, Poverkhn.: Rentgenovskie, Sinkhrotonnye Neitr. Issled., No. 6, 57 (2019). https://www.doi.org/10.1134/S0207352819060143

  9. Yu. A. Goponov, S. A. Laktionova, R. A. Shatokhin, M. A. Sidnin, K. Sumitani, Y. Takabayashi, and I. E. Vnukov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 578 (2019). https://www.doi.org/10.1134/S0207352819060143

    Google Scholar 

  10. R. Rullhusen, X. Artru, and P. Dhez, Phys. Rev. Accel. Beams 22, 082803 (2019). https://www.doi.org/10.1103/PhysRevAccelBeams. 22.082803

  11. Yu. A. Goponov, S. A. Laktionova, O. O. Pligina, M. A. Sidnin, and I. E. Vnukov, Novel Radiation Sources Using Relativistic Electrons (World Scientific, Singapore, 1999). 7. G. Kube, C. Behrens, A. S. Gogolev, Yu. P. Popov, A. P. Potylitsyn, W. Lauth, and S. Weisse, Nucl. Instrum. Methods Phys. Res., Sect. B 355, 150 (2015). https://www.doi.org/10.1016/j.nimb.2015.03.068

  12. Yu. A. Goponov, R. A. Shatokhin, M. A. Sidnin, K. Sumitani, Y. Takabayashi, I. E. Vnukov, and I. S. Volkov, J. Instrum. 15, C04025 (2020). https://www.doi.org/10.1088/1748-0221/15/04/C04025

    Article  CAS  Google Scholar 

  13. Yu. A. Goponov, R. A. Shatokhin, K. Sumitani, and Y. Takabayashi, Nucl. Instrum. Methods Phys. Res., Sect. A 996, 165132 (2021). https://www.doi.org/10.1016/j.nima.2021.165132

  14. S. V. Blazhevich, M. V. Bronnikova, and A. V. Noskov, Phys. Lett. A 384, 126321 (20(20). https://www.doi.org/10.1016/j.physleta.2020.126321

  15. S. V. Blazhevich, M. V. Bronnikova, and A. V. Noskov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 922 (2020). https://doi.org/10.1134/S1027451020040230

    Article  CAS  Google Scholar 

  16. S. V. Blazhevich and A. V. Noskov, Nucl. Instrum. Methods Phys. Res., Sect. B 441, 119 (2019). https://www.doi.org/10.1016/j.nimb.2018.12.043

  17. A. V. Berdnichenko, R. A. Shatokhin, Y. Takabayashi, and I. E. Vnukov, Phys. Lett. A 409, 127537 (2021). https://www.doi.org/10.1016/j.physleta.2021.127537

    Article  CAS  Google Scholar 

  18. A. V. Berdnichenko, I. E. Vnukov, Y. A. Goponov, R. A. Shatokhin, and Y. Takabayashi J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 16, 273 (2022). https://doi.org/10.1134/S1027451022030053

    Article  CAS  Google Scholar 

  19. Y. Takabayashi and A. V. Shchagin, Nucl. Instrum. Methods Phys. Res., Sect. B 278, 78 (2012). https://www.doi.org/10.1016/j.nimb.2012.02.021

  20. A. S. S. Silva, C. S. Gomes, A. S. Machado, J. R. Nascimento, R. S. Santos, D. F. Oliveira Anjos, M. J. Dos, and R. T. Lopes, X-Ray Spectrom. 48, 375 (2019). https://www.doi.org/10.1002/xrs.3016

    Article  CAS  Google Scholar 

  21. A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, Rev. Sci. Instrum. 79, 113102 (2008). https://www.doi.org/0034-6478/2008/79(11)113102/ 4/$23.00

    Article  CAS  Google Scholar 

  22. A. V. Berdnichenko, Yu. A. Goponov, R. A. Shatokhin, Y. Takabayashi, and I. E. Vnukov, Nucl. Instrum. Methods Phys. Res., Sect. A 1032, 166619 (2022). https://www.doi.org/10.1016/j.nima.2022.1666

  23. M. J. Berger and J. H. Hubbell, Photon Cross Sections Database (NIST, 2017). http://www.nist.gov/pml/data/xcom/index.cfm. Cited March 21, 2022.

  24. Yu. A. Goponov, M. A. Sidnin, I. E. Vnukov, C. Behrens, G. Kube, W. Lauth, A. S. Gogolev, and A. P. Potylitsyn, Nucl. Instrum. Methods Phys. Res., Sect. B 402, 83 (2017). https://www.doi.org/10.1016/j.nimb.2017.03.006

  25. Yu. A. Goponov, S. A. Laktionova, M. A. Sidnin, and I. E. Vnukov, Nucl. Instrum. Methods Phys. Res., Sect. B 402, 92 (2017). https://www.doi.org/1016/j.nimb.2017.02.068

  26. K. H. Brenzinger, C. Herberg, B. Limburg, H. Backe, S. Dambach, H. Euteneuer, F. Hagenbuck, H. Hartmann, K. Johann, K. H. Kaiser, O. Kettig, G. Knies, G. Kube, W. Lauth, H. Schoope, and Th. Walcher, Z. Phys. 358, 107 (1997). https://www.doi.org/10.1007/s002180050283

    CAS  Google Scholar 

  27. I. E. Vnukov, I. S. Volkov, Yu. A. Goponov, M. A. Sidnin, and R. A. Shatohin, Prikl. Mat. Fiz., No. 52(2), 152 (2020). https://www.doi.org/10.18413/2687-0959-2020-52-2-152-168

  28. A. P. Potilitsyn, Izv. Vyssh. Uchebn. Zaved., Fiz.41 (4), 26 (1998).

    Google Scholar 

  29. A. S. Lobko, Experimental Studies of Parametric X-Ray Radiation (Beloruss. Gos. Univ., Minsk, 2006) [in Russian].

    Google Scholar 

  30. K.-H. Brenzinger, B. Limburg, H. Backe, S. Dambach, H. Euteneuer, F. Hagenbuck, C. Herberg, K. H. Kaiser, O. Ketting, and G. Kube, Phys. Rev. Lett. 79, 2462 (1997). https://www.doi.org/10.1103/PhysRevLett.79.2462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vnukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnichenko, A.V., Vnukov, I.E., Goponov, Y.A. et al. On the Use of Crystals with an Asymmetric Reflection Geometry to Measure the Parameters of Electron Beams. J. Surf. Investig. 17, 240–250 (2023). https://doi.org/10.1134/S1027451023010299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023010299

Keywords:

Navigation