Skip to main content
Log in

Reflection of H+(2 keV) Ions from Metallic Surfaces: Transport Theory Calculation of the Reflection Probability with the Mean Energy Approximation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A study of the reflection of H+ (2 keV) ions from metallic surfaces for low incidence and scattering angles is presented in this paper. A theoretical model based on the transport theory was used to calculate the reflection probability corresponding to a given path length in the target. This probability can be used to calculate energy spectra of the reflected ions. Energy loss of the projectile is taken into account in this calculation. However, for high values of the projectile path length, this calculation becomes time consuming. In this paper, we showed that the scattering probability can be calculated more simply with the use of the mean energy approximation as in the case of multiple scattering for transmission geometry. We tested the proposed average energy function for different values of incidence and scattering angles, several metallic targets and different interatomic potentials. We also performed this test by considering different values of the electronic energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H.H. Brongersma, M. Draxler, M. de Ridder, and P. Bauer, Surf. Sci. Rep. 62, 63 (2007). https://doi.org/10.1016/j.surfrep.2006.12.002

    Article  CAS  Google Scholar 

  2. D. Goebl, D. Roth, and P. Bauer, Phys. Rev. A 87, 062903 (2013). https://doi.org/10.1103/PhysRevA.87.062903

    Article  CAS  Google Scholar 

  3. S. P. Chenakin, R. Kolarova, S. N. Markin, D. Primetzhofer, and P. Bauer, Nucl. Instrum. Methods Phys. Res., Sect. 258, 32 (2007). https://doi.org/10.1016/j.nimb.2006.12.173

    Article  CAS  Google Scholar 

  4. P. Brüner, T. Grehl, H. Brongersma, B. Detlefs, E. Nolot, H. Grampeix, E. Steinbauer, and P. Bauer, J. Vac. Sci. Technol. A 33, 01A122 (2015). https://doi.org/10.1116/1.4901451

  5. G. Amsel, G. Battistig, and A. L’Hoir, Nucl. Instrum. Methods Phys. Res., Sect. B 201, 325 (2003). https://doi.org/10.1016/S0168-583X(02)01740-8

    Article  CAS  Google Scholar 

  6. P. Sigmund and K. B. Winterbon, Nucl. Instrum. Methods 119, 541 (1974). https://doi.org/10.1016/0029-554X(74)90805-2

    Article  Google Scholar 

  7. V. S. Remizovich, M. I. Ryazanov, and I. S. Tilinin, J. Exp. Theor. Phys. 52, 225 (1980).

    Google Scholar 

  8. J. V. Vukanic, R. K. Janev, and D. Heifetz, Nucl. Instrum. Methods Phys. Res., Sect. B 18, 131 (1986). https://doi.org/10.1016/S0168-583X(86)80022-2

    Article  Google Scholar 

  9. K. Khalal-Kouache, A. C. Chami, M. Boudjema, P. Benoit-Cattin, C. Benazeth, and Y. Boudouma, Nucl. Instrum. Methods Phys. Res., Sect. B 183, 279 (2001). https://doi.org/10.1016/S0168-583X(01)00739-X

    Article  CAS  Google Scholar 

  10. K. Khalal-Kouache, B. Aissous, A. Mekhtiche, and A. C. Chami, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 714 (2008). https://doi.org/10.1016/j.nimb.2007.11.043

    Article  CAS  Google Scholar 

  11. J. E. Valdés and N. R. Arista, Phys. Rev. A 49, 2690 (1994). https://doi.org/10.1103/PhysRevA.49.2690

    Article  Google Scholar 

  12. H. H. Andersen and J. Bottinger, Phys. Rev. B 4, 2105 (1971). https://doi.org/10.1103/PhysRevB.4.2105

    Article  Google Scholar 

  13. A. D. Marwickand P. Sigmund, Nucl. Instrum. Methods 126, 317 (1975). https://doi.org/10.1016/0029-554X(75)90693-X

    Article  Google Scholar 

  14. P. Sigmund, J. Heinemeier, F. Besenbacher, P. Hvelplund, and H. Knudsen, Nucl. Instrum. Methods 150, 221 (1978). https://doi.org/10.1016/0029-554X(78)90370-1

    Article  CAS  Google Scholar 

  15. J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. 36, 10 (1968).

    Google Scholar 

  16. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, SRIM-2008. http://www.srim.org.

  17. G. Hogberg, H. Norden, and H. G. Berry, Nucl. Instrum. Methods 90, 283 (1970). https://doi.org/10.1016/0029-554X(70)90682-8

    Article  CAS  Google Scholar 

  18. A. Mekhticheand K. Khalal-Kouache, Nucl. Instrum. Methods Phys. Res., Sect. B 382, 32 (2016). https://doi.org/10.1016/j.nimb.2016.04.040

    Article  CAS  Google Scholar 

  19. G. Molière, Z. Naturforsch., A 2, 133 (1947).

  20. W. Lenz, Z. Phys. 77, 713 (1932). https://doi.org/10.1007/BF01342150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Khalal-Kouache.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, A., Mekhtiche, A. & Khalal-Kouache, K. Reflection of H+(2 keV) Ions from Metallic Surfaces: Transport Theory Calculation of the Reflection Probability with the Mean Energy Approximation. J. Surf. Investig. 16, 1231–1236 (2022). https://doi.org/10.1134/S1027451022060416

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060416

Keywords:

Navigation