Skip to main content
Log in

Application of Machine Learning Methods to Approximate the Binding Energy of CO Molecules on the Surface of Pd Nanoparticles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This manuscript presents a study of the applicability of machine learning methods for the problem of binding energy approximation of carbon monoxide adsorbates on the surface of a palladium nanoparticle. Machine learning algorithms were trained using a set of structures that represent models of CO interaction with different parts of the Pd55 nanocluster with a variable distance from the molecule to the surface, for which the energy was calculated using the density functional theory methods. For structures that make up a training set, the radial distribution functions were calculated. Using these functions and their segments as descriptors, the effectiveness of various machine learning algorithms, such as “gradient boosting,” “ridge regression,” “extra trees,” and “support vector machines” for calculating the binding energy, was tested. Based on three different metrics, it was found that the error in determining the binding energy was the smallest when using the “support vector machines”: the mean absolute error was 0.093 eV. The efficiency of various individual sections of the distribution function used as descriptors was compared. It was found that it is crucial to take into account the part of the radial distribution function from 1.5 to 2.5 Å for a correct approximation of the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Pakhare and J. Spivey, Chem. Soc. Rev. 43, 7813 (2014). https://doi.org/10.1039/C3CS60395D

    Article  CAS  Google Scholar 

  2. V. Pareek, A. Bhargava, R. Gupta, N. Jain, and J. Panwar, Adv. Sci. Eng. Med. 9, 527 (2017). https://doi.org/10.1166/asem.2017.2027

    Article  CAS  Google Scholar 

  3. K. Kinoshita, J. Electrochem. Soc. 137, 845 (2017). https://doi.org/10.1149/1.2086566

    Article  Google Scholar 

  4. S. Rojluechai, S. Chavadej, J. W. Schwank, and V. Meeyoo, Catal. Commun. 8, 57 (2007). https://doi.org/10.1016/j.catcom.2006.05.029

    Article  CAS  Google Scholar 

  5. C. J. DeSantis, A. A. Peverly, D. G. Peters, and S. E. Skrabalak, Nano Lett. 11, 2164 (2011). https://doi.org/10.1021/nl200824p

    Article  CAS  Google Scholar 

  6. C. Sun, Z. Cao, J. Wang, L. Lin, and X. Xie, New J. Chem. 43, 2567 (2019). https://doi.org/10.1039/C8NJ05152F

    Article  CAS  Google Scholar 

  7. S. K. Vatti, K. K. Ramaswamy, and V. Balasubramanaian, J. Adv. Nanomat. 2, 127 (2017). https://doi.org/10.22606/jan.2017.22006

    Article  Google Scholar 

  8. B. R. Cuenya, Thin Solid Films 518, 3127 (2010). https://doi.org/10.1016/j.tsf.2010.01.018

    Article  CAS  Google Scholar 

  9. A. A. Tereshchenko, V. A. Polyakov, A. A. Guda, A. N. Bulgakov, A. L. Tarasov, L. M. Kustov, V. V. Butova, A. L. Trigub, and A. V. Soldatov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 447 (2020). https://doi.org/10.1134/S1027451020030180

    Article  CAS  Google Scholar 

  10. I. V. Yudanov, R. Sahnoun, K. M. Neyman, N. Rösch, J. Hoffmann, S. Schauermann, V. Johanek, H. Unterhalt, G. Rupprechter, and J. Libuda, J. Chem. Phys. B 107, 255 (2003). https://doi.org/10.1021/jp022052b

    Article  CAS  Google Scholar 

  11. X. Wang, G. Wu, N. Guan, and L. Li, Appl. Catal., B 115, 7 (2012). https://doi.org/10.1016/j.apcatb.2011.12.011

    Article  CAS  Google Scholar 

  12. Q. Fan, S. He, L. Hao, X. Liu, Y. Zhu, S. Xu, and F. Zhang, Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/srep42172

    Article  CAS  Google Scholar 

  13. L. L. Sheu, Z. Karpinski, and W. M. Sachtler, J. Chem. Phys. 93, 4890 (1989). https://doi.org/10.1021/j100349a042

    Article  CAS  Google Scholar 

  14. A. Tereshchenko, A. Guda, V. Polyakov, Y. Rusalev, V. Butova, and A. Soldatov, Analyst 145, 7534 (2020). https://doi.org/10.1039/D0AN01303J

    Article  CAS  Google Scholar 

  15. B. R. Cuenya and F. Behafarid, Surf. Sci. Rep. 70, 135 (2015). https://doi.org/10.1016/j.surfrep.2015.01.001

    Article  CAS  Google Scholar 

  16. C. D. Rankine, M. M. Madkhali, and T. J. Penfold, J. Chem. Phys. A 124, 4263 (2020). https://doi.org/10.1021/acs.jpca.0c03723

    Article  CAS  Google Scholar 

  17. J. Timoshenko, D. Lu, Y. Lin, and A. I. Frenkel, J. Phys. Chem. Lett. 8, 5091 (2017). https://doi.org/10.1021/acs.jpclett.7b02364

    Article  CAS  Google Scholar 

  18. J. Timoshenko, A. Anspoks, A. Cintins, A. Kuzmin, J. Purans, and A. I. Frenkel, Thin Solid Films 120, 225502 (2018). https://doi.org/10.1103/PhysRevLett.120.225502

    Article  CAS  Google Scholar 

  19. S. A. Tupy, A. M. Karim, C. Bagia, W. Deng, Y. Huang, D. G. Vlachos, and J. G. Chen, ACS Catal. 2, 2290 (2012). https://doi.org/10.1021/cs3004227

    Article  CAS  Google Scholar 

  20. J. L. Lansford and D. G. Vlachos, Nat. Commun. 11, 1513 (2020). https://doi.org/10.1038/s41467-020-15340-7

    Article  CAS  Google Scholar 

  21. F. Calle-Vallejo, J. I. Martínez, J. M. García-Lastra, P. Sautet, and D. Loffreda, Angew. Chem., Int. Ed. 53, 8316 (2014). https://doi.org/10.1002/anie.201402958

    Article  CAS  Google Scholar 

  22. I. Takigawa and K. Shimizu, RSC Adv. 6, 52587 (2016). https://doi.org/10.1039/C6RA04345C

  23. R. Gasper, H. Shi, and A. Ramasubramaniam, J. Chem. Phys. C 121, 5612 (2017). https://doi.org/10.1021/acs.jpcc.6b12800

    Article  CAS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  25. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  26. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  27. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).

    Article  CAS  Google Scholar 

  28. C. Lamberti, A. Zecchina, E. Groppo, and S. Bordiga, Chem. Soc. Rev. 39, 4951 (2010). https://doi.org/10.1039/C0CS00117A

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education (agreement no. 075-15-2021-1363). Andrei Tereshchenko thanks the Russian Foundation for Basic Research (research project no. 20-32-90 048) for financial support of experimental studies to verify the results of theoretical modeling by FTIR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Tereshchenko or A. A. Guda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, A.A., Pashkov, D.M., Guda, A.A. et al. Application of Machine Learning Methods to Approximate the Binding Energy of CO Molecules on the Surface of Pd Nanoparticles. J. Surf. Investig. 16, 901–908 (2022). https://doi.org/10.1134/S1027451022050366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050366

Keywords:

Navigation