Skip to main content
Log in

Analysis of the Causes of Glass Contamination by Polyethylene Film

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Polyethylene is a material that is used in many industries as a packaging material. The polyethylene film can thus come into contact with various materials from wood to glass. When the polyethylene film comes into contact with the glass, it is important that it does not contaminate the surface of the glass, as this may impair its further usability. Glass processors from the automotive industry glue other parts to the glass. In the process of assembling other parts on the glass, the critical parameter is the cleanliness of the glass surface so that the required adhesion of the component to the glass is achieved. Contamination of glass that has been in contact with the polyethylene packaging film is discussed in this article. The analysis of the contamination on the glass itself with a discussion of the possible cause of the contamination is discussed in detail with the issuance of recommendations for automotive glass processors regarding the use of polyethylene film that comes into contact with the glass surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. L. Kubík and S. Zeman, J. Cent. Eur. Agric. 15, 138 (2014). https://www.doi.org./10.5513/JCEA01/15.1.1425

    Article  Google Scholar 

  2. Z. Xiuhua, Z. Xudong, Q. Yongkang, and Y. Zou, Mater. Sci.: Mater. Rev. 1, 504 (2018). https://www.doi.org./10.18063/msmr.v1i1.504

  3. N. Yinna, D. Shengyu, and C. Changle, Macromolecules 51, 4040 (2018). https://www.doi.org./10.1021/acs.macromol.8b00467

    Article  Google Scholar 

  4. A. Thorbjörn, B. Stâlbom, and B. Wesslén, J. Appl. Polym. Sci. 91, 1525 (2004). https://www.doi.org./10.1002/app.13024

    Article  Google Scholar 

  5. J. J. Shea, Electr. Insul. Mag. 14, 39 (1998). https://www.doi.org./10.1109/MEI.1998.714646

  6. C. Mbaocha, A. Nosiri, and P. Eze, IOP Conf. Ser.: Mater. Sci. Eng. 1065, 595 (2021). https://www.doi.org./10.1088/1757-899X/1065/1/012014

  7. S. Ravi, M. Sudha, and P. A. Balakrishnan, Modell. Simul. Eng. 2011, 8 (2011). https://www.doi.org./10.35429/JTP.2020.18.6.10.17

  8. O. Kulikov, K. Hornung, and M. H. Wagner, Int. Polym. Process. 24, 452 (2009). https://www.doi.org./10.3139/217.2296

    Article  CAS  Google Scholar 

  9. P. Palutkiewicz, M. Trzaskalska, and E. Bociaga, Cellular Polym. 39, 3 (2020) https://www.doi.org./10.1177/0262489319873642

    Article  CAS  Google Scholar 

  10. R. M. Price, US Patent No. 2965589, 1960.

  11. J. U. Zilles, Fillers Polym. Appl. 1, 425 (2017). https://www.doi.org./10.1007/978-3-319-28117-9_15

  12. C. Llop, Polym. Eng. Sci. 51, 1763 (2011). https://www.doi.org./10.1002/pen.21963

    Article  CAS  Google Scholar 

  13. X. Jun and L. Yibing, in Impact Behavior and Pedestrian Protection of Automotive Laminated Windshield (Springer, Singapore, 2019). https://www.doi.org./10.1007/978-981-13-2441-3_2

    Google Scholar 

  14. A. Varsheya and J. Mauro; Fundam. Inorg. Glasses 2019, 595 (2019). https://www.doi.org./10.1016/B978-0-12-816225-5.00020-1

  15. O. Sener, I. Sokmen, K. Bange, P. Richet, R. Conradt, A. Takada, and J. Dyon, Thin-Film Technol. Glass Surf. 2, 763 (2021). https://www.doi.org./10.1002/9781118801017.ch6.8

  16. R. K. Agrawal and L. T. Drzal, J. Adhes. 55, 221 (1996). https://www.doi.org./10.1080/00218469608009949

    Article  CAS  Google Scholar 

  17. S. J. Marshall; Dent. Mater. 26, 11 (2009). https://www.doi.org./10.1016/j.dental.2009.11.157

    Article  Google Scholar 

  18. R. V. Kumar and J. Buckett, in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2017). https://www.doi.org./10.1016/B978-0-12-803581-8.01850-6

    Google Scholar 

  19. S. Kumar, A. Moitra, and P. Gupta, Trans. Indian Ceram. Soc. 32, 35 (2014). https://www.doi.org./10.1080/0371750X.1973.10840557

    Article  Google Scholar 

  20. W. Birch, in Sol-Gel Technologies for Glass Producers and Users (Springer, Boston, 2004), p. 19. https://www.doi.org./10.1007/978-0-387-88953-5_2

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to express my deepest thanks to my colleague Tereza Kordová for her contribution in this study. I am extremely grateful to Martin Havlík Míka for his professional guidance, advice and for his contribution in this study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ales Mareska, Tereza Kordová or Martin Míka.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

INSTITUTIONAL REVIEW BOARD STATEMENT:

Not applicable.

INFORMED CONSENT STATEMENT

Informed consent is obtained from all subjects involved in the study. Written informed consent has been obtained from the patient(s) to publish this paper.

DATA AVAILABILITY STATEMENT

Data supporting the veracity of the measured results can be declared by the University of Chemical Technology, specifically the Departments of Glass and Ceramics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareska, A., Kordová, T. & Míka, M. Analysis of the Causes of Glass Contamination by Polyethylene Film. J. Surf. Investig. 16, 919–928 (2022). https://doi.org/10.1134/S1027451022050330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050330

Keywords:

Navigation