Skip to main content
Log in

p–n Structure Formed on the Surface of n-type GaAs by Low-Energy Ar+ Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The dark current–voltage characteristics of a p–n structure created on the surface of an n-type GaAs wafer by Ar+ ions with the energy Ei = 2500 eV are studied. To avoid the metallization of a thin (~10 nm) ion-modified p-type layer, multilayer metal contacts are deposited onto both sides of the plate without subsequent annealing. The diode effect with a forward-to-reverse current ratio up to three orders of magnitude is observed in the voltage range as high as 0.7 eV contrary to the unirradiated reference sample. The linear dependence of most current–voltage characteristics of the unirradiated reference sample and coincidence of the experimental current–voltage characteristics with the calculated ones for the ion-induced p–n-structure indicate the predominantly ohmic nature of the metallic contacts and that the observed diode effect is determined by the ion-induced p–n structure. An analysis of two regions with different slopes in the current–voltage characteristics reveals two current-transport mechanisms: recombination and diffusion. The considered effect of the ion-induced formation of the p–n structure limits the use of low-energy argon ions for preparing an atomically clean surface of n-type GaAs-based semiconductors for their study by surface-sensitive methods because the p–n structure is formed on the surface instead of a homogeneous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. W. Czanderna and C. Lu, Methods Phenom. 7, 1 (1984). https://www.doi.org/10.1016/B978-0-444-42277-4.50007-7

  2. R. Nix, Surface Science, Chapter 5: Surface Analytical Techniques (Univ. London, London, 2021).

  3. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, New York, 1983). https://www.doi.org/10.1002/sia.74006061 1

  4. C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perking-Elmer, Eden Prairie, 1979). https://www.doi.org/org/10.1002/sia.740030412

  5. A. G. Baca and C. I. H. Ashby, Fabrication of GaAs devices (IET, London, 2005). https://www.doi.org/10.1049/PBEP006E

    Book  Google Scholar 

  6. V. M. Mikoushkin, V. V. Bryzgalov, S. Yu. Nikonov, A. P. Solonitsyna, and D. E. Marchenko, Europhys. Lett. 122, 27002 (2018). https://www.doi.org/10.1209/0295-5075/122/27002

    Article  Google Scholar 

  7. V. M. Mikoushkin, E. A. Makarevskaya, and M. Brzhezinskaya, Appl. Surf. Sci. 539, 148273 (2021). https://www.doi.org/10.1016/j.apsusc.2020.148273

    Article  CAS  Google Scholar 

  8. H. Y. Cho, E. K. Kim, S. Min, J. B. Kim, and J. Jang, Appl. Phys. Lett. 53, 856 (1998). https://www.doi.org/10.1063/1.100094

    Article  Google Scholar 

  9. A. W. R. Leitch, Th. Prescha, and J. Weber, Phys. Rev. B 45, 14400 (1992). https://www.doi.org/10.1103/PhysRevB.45.1440

    Article  CAS  Google Scholar 

  10. F. D. Auret, W. E. Meyer, P. N. K. Deenapanray, S. A. Goodman, G. Myburg, M. Murtagh, Ye Shu-Ren, and G. M. Crean, J. Appl. Phys. 84, 1973 (1998). https://www.doi.org/10.1063/1.368329

    Article  CAS  Google Scholar 

  11. A. Venter, C. Nyamhere, J. R. Botha, and F. D. Auret, J. Appl. Phys. 111, 013703 (2012). https://www.doi.org/10.1063/1.3673322

    Article  Google Scholar 

  12. F. D. Auret, S. A. Goodman, G. Myburg, and W. E. Meyer, Appl. Phys. A: Solids Surf. 56, 547 (1993). https://www.doi.org/10.1007/BF00331403

    Article  Google Scholar 

  13. P. Jayavel, J. Kumar, K. Santhakumar, P. Magudapathy, and K. G. M. Nair, Vacuum 57, 51 (2000). https://www.doi.org/10.1016/S0042-207X(99)00211-0

    Article  CAS  Google Scholar 

  14. B. Ziebro, J. W. Hemsky, and D. C. Look, J. Appl. Phys. 72, 78 (1992). https://www.doi.org/10.1063/1.352098

    Article  Google Scholar 

  15. D. Pons and J. C. Bourgoin, J. Phys. C 18, 3839 (1985). https://www.doi.org/10.1088/0022-3719/18/20/012

    Article  CAS  Google Scholar 

  16. F. D. Auret, L. J. Bredell, G. Myburg, and W. O. Barnard, Jpn. J. Appl. Phys. 30, 80 (1991).

    Article  CAS  Google Scholar 

  17. S. A. Goodman, F. D. Auret, and W. E. Meyer, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 349 (1994). https://www.doi.org/10.1016/0168-583X(94)95569-7

  18. F. Zhan, J. Hu, Y. Zhang, and F. Lu, Appl. Surf. Sci. 255, 8257 (2009). https://www.doi.org/10.1016/j.apsusc.2009.05.092

    Article  CAS  Google Scholar 

  19. V. M. Mikoushkin, V. S. Kalinovskii, E. V. Kontrosh, and E. A. Makarevskaya, Semiconductors 53, 1922 (2019). https://www.doi.org/10.1134/S1063782619140136

    Article  CAS  Google Scholar 

  20. A. Galal, Silvaco Atlas User’s Manual Device Simulation Software (Sivalco, Santa Clara, 2016). https://ridl.cfd.rit.edu/products/Manuals/Silvaco/atlas_users.pdf

    Google Scholar 

  21. A. V. Malevskaya, V. S. Kalinovskii, N. D. Il’inskaya, D. A. Malevskii, E. V. Kontrosh, M. Z. Shvarts, and V. M. Andreev, Tech. Phys. 63, 1177 (2018). https://doi.org/10.1134/S106378421808011X

    Article  CAS  Google Scholar 

  22. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2021). https://www.doi.org/10.1117/12.2033679

    Article  Google Scholar 

  23. L. Feng, L. Zhang, H. Liu, X. Gao, Z. Miao, H . C. Cheng, L. Wang, and S. Niu, Proc. SPIE 8912, 89120N (2013). https://www.doi.org/10.1117/12.2033679

    Article  Google Scholar 

  24. V. M. Mikoushkin, V. V. Bryzgalov, E. A. Makarevskaya, A. P. Solonitsyna, and D. E. Marchenko, Semiconductors 52, 2057 (2018). https://www.doi.org/10.1134/S1063782618160194

    Article  CAS  Google Scholar 

  25. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952). https://www.doi.org/10.1103/PhysRev.87.835

    Article  CAS  Google Scholar 

  26. R. N. Hall, Phys. Rev. 87, 387 (1952). https://www.doi.org/10.1103/PhysRev.88.139

    Article  CAS  Google Scholar 

  27. J. W. Slotboom and H. C. de Graaf, Solid State Electron. 19, 857 (1976). https://www.doi.org/10.1016/0038-1101(76)90043-5

    Article  CAS  Google Scholar 

  28. R. I. I. Kilway, Five-Junction Solar Cell Optimization Using Silvaco ATLAS (Naval Postgrad. School, Monterey, 2017).

    Google Scholar 

  29. J. F. Ziegler and J. M. Manoyan, Phys. Res. B 35, 215 (1998). https://www.doi.org/10.1016/0168-583X(88)90273-X

  30. V. M. Mikoushkin, E. A. Makarevskaya, A. P. Solonitsyna, and M. Brzhezinskaya, Semiconductors 54, 1702 (2020). https://www.doi.org/10.1134/S1063782620120222

    Article  CAS  Google Scholar 

  31. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). https://www.doi.org/10.1002/0470068329

    Google Scholar 

  32. V. M. Andreev, V. V. Evstropov, V. S. Kalinovskii, V. M. Lantratov, and V. P. Khvostikov, Semiconductors 41, 732 (2007).

    Article  CAS  Google Scholar 

  33. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957). https://www.doi.org/10.1109/JRPROC.1957.278528

  34. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 17-19-01200-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Makarevskaya.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarevskaya, E.A., Novikov, D.A., Mikoushkin, V.M. et al. p–n Structure Formed on the Surface of n-type GaAs by Low-Energy Ar+ Ions. J. Surf. Investig. 16, 890–895 (2022). https://doi.org/10.1134/S1027451022050329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050329

Keywords:

Navigation