Skip to main content
Log in

Features of the Grazing Interaction of Microfocal Bremsstrahlung with the Surface Edge

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The experimental results of studying the grazing interaction of microfocus bremsstrahlung with the edge surface of a plastic framework of the radiographic image quality standard Duplex IQI are presented. The results show that the edge contrast depends on the orientation of the edge surface and can be more complex than the two narrow bands of increased and decreased darkening on the X-ray radiographic pattern, which are determined by radiation refraction. The results were obtained using microfocus bremsstrahlung generated by grazing interaction of an internal electron beam of a B-18 betatron with an energy of 18 MeV with a surface of the Si target 50 or 8 μm thick and 4 mm long along the electron beam. The results are compared with the results on edge contrast obtained using the microfocus bremsstrahlung of a 450-keV X-ray tube with a focus size of 400 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. M. Rychkov, V. V. Kaplin, K. Sukharnikov, and I. K. Vaskovsky, JETP Lett. 103, 723 (2016).

    Article  CAS  Google Scholar 

  2. M. M. Rychkov, V. V. Kaplin, S. I. Kuznetsov, K. Sukharnikov, and I. K. Vaskovs’kii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 660 (2017).

    Article  CAS  Google Scholar 

  3. M. M. Rychkov, V. V. Kaplin, E. L. Malikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 289, 012044 (2017).

  4. M. M. Rychkov, V. V. Kaplin, E. L. Malikov, V. A. Smolyanskii, Yu. B. Stepanov, A. S. Lutsenko, V. Gentsel’man, and I. K. Vaskovs’kii, J. Phys.: Conf. Ser. 881, 012007 (2017).

    Google Scholar 

  5. M. M. Rychkov, V. V. Kaplin, E. L. Malikov, V. A. Smolyanskii, V. Gentsel’man, and I. K. Vaskovs’kii, J. Nondestruct. Eval. 37, 13 (2018).

    Article  Google Scholar 

  6. V. S. Pushin and V. L. Chakhlov, RF Patent No. 2072543 (1997). http://www.findpatent.ru/patent/207/2072643.html

  7. H. Yamada, Jpn. J. Appl. Phys. 35 (2A), 182 (1996).

    Article  Google Scholar 

  8. IE-NTD. http://ie-ndt.co.uk/en4625astme2002duplexiqi.html.

  9. S. V. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, Nature 384, 335 (1996).

    Article  CAS  Google Scholar 

  10. T. Hirai, H. Yamada, M. Sasaki, D. Hasegawa, M. Morita, Y. Oda, J. Takaku, T. Hanashima, N. Nitta, M. Takahashi, and K. Murata, J. Synchrotron Radiat. 13, 397 (2006).

    Article  Google Scholar 

  11. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, Rev. Sci. Instrum. 66, 5486 (1995).

    Article  CAS  Google Scholar 

  12. T. F. Gureyev, D. M. Paganin, G. R. Mayers, Y. I. Nesterets, and S. W. Wilkins, Appl. Phys. Lett. 89, 034102 (2006).

    Article  Google Scholar 

  13. C. M. Laperle, Ph. Wintermeyer, J. R. Wands, D. Shi, M. A. Anastasio, X. Li, B. Arh, G. J. Diebold, and C. Rose-Petruck, Appl. Phys. Lett. 91, 173901 (2007).

    Article  Google Scholar 

  14. S. V. Gasilov, A. Ya. Fayanov, T. A. Pikuz, I. Skobelev, F. Kalegary, K. Votstse, M. Nicoly, D. Sansone, D. Valentiny, S. De Sil’estry, and S. Statzira, JETP Lett. 87, 286 (2008).

    Article  Google Scholar 

  15. M. El-Ghazaly, H. Backe, W. Lauth, G. Kube, P. Kunz, A. Sharafutdinov, and T. Weber, Eur. Phys. J. A 28, 197 (2006). https://doi.org/10.1140/epja/i2006-09-021-6

    Article  Google Scholar 

  16. M. M. Rychkov, V. V. Kaplin, S. I. Kuznetsov, V. A. Smolyanskii, and I. K. Vaskovs’kii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 609 (2019).

    Article  CAS  Google Scholar 

  17. M. M. Rychkov, V. V. Kaplin, S. I. Kuznetsov, and V. A. Smolyanskii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 221 (2021). https://doi.org/10.1134/S1027451021020129

    Article  CAS  Google Scholar 

  18. MXR-451HP/11. http://www.comet-xray.cn/CometXRay/media/Content/pdf_mxr-451hp_11_de_v1.pdf.

  19. J. van Heekeren, A. Kostenko, T. Hanashima, H. Yamada, S. Stallinga, E. Offerman, and L. Vliet, Med. Phys. 38, 5136 (2011). https://doi.org/10.1118/1.3622606

    Article  Google Scholar 

  20. Y. Hwu, Wen-Li Tsai, A. Groso, G. Margaritondo, and Ho Je Jung, J. Phys. D: Appl. Phys. 35, R105 (2002). https://doi.org/10.1088/0022-3727/35/13/201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Rychkov or V. A. Smolyanskiy.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rychkov, M.M., Kaplin, V.V. & Smolyanskiy, V.A. Features of the Grazing Interaction of Microfocal Bremsstrahlung with the Surface Edge. J. Surf. Investig. 16, 753–758 (2022). https://doi.org/10.1134/S1027451022050172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050172

Keywords:

Navigation