Skip to main content
Log in

Effect of the Content of Silicon on the Optical Properties of Al–Si–N Coatings Irradiated with Carbon Ions in the Short-Pulse Implantation Mode

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of short-pulse irradiation with 200-keV carbon ions on the optical and electrical properties of aluminum-nitride films and Al–Si–N coatings with variable atomic composition deposited by reactive magnetron sputtering on a silicon substrate is investigated. Absorption and luminescence centers are associated with growth and radiation-induced defects in nitrides and their simplest complexes. A change in the properties during irradiation occurs due to the accumulation of radiation defects and their association into complexes. Ion irradiation is accompanied by intense radiation and the thermal annealing of unstable defects. The dose dependences of the coating characteristics indicate their high radiation resistance, which are slightly inferior to coatings on steel substrates. The radiation resistance of the coatings is due to the limiting effect of growth defects on defect formation, the wide band gap of nitrides and the interaction of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. T. Arguirov, T. Mchedlidze, V. D. Akhmetov, S. Kouteva-Arguirova, M. Kittler, R. Rölver, B. Berghoff, M. Först, D. L. Bätzner, and B. Spangenberg, Appl. Surf. Sci. 254, 1083 (2007). https://doi.org/10.1016/j.apsusc.2007.07.150

    Article  CAS  Google Scholar 

  2. M. Hoek, Nucl. Instrum. Methods Phys. Res., Sect. A 639, 227 (2011). https://doi.org/10.1016/j.nima.2010.09.177

    Article  CAS  Google Scholar 

  3. F. Nava, E. Vittone, P. Vanni, P. G. Fuochi, and C. Lanzieri, Nucl. Instrum. Methods Phys. Res., Sect. A 514, 126 (2003). 4https://doi.org/10.1016/j.nima.2003.08.09

  4. I. J. Beyerlein, M. J. Demkowicz, A. Misra, and B. P. Uberuaga, Prog. Mater. Sci. 74, 125 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.001

    Article  CAS  Google Scholar 

  5. A. V. Novikov, A. N. Yablonskiya, V. V. Platonov, S. V. Obolenskiy, D. N. Lobanov, and Z. F. Krasilnik, Semiconductors 44, 329 (2010). https://doi.org/10.1134/S1063782610030103

    Article  CAS  Google Scholar 

  6. A. S. Vokhmintsev, I. A. Weinstein, and D. M. Spiridonov, J. Lumin. 132, 2109 (2012). https://doi.org/10.1016/j.jlumin.2012.03.066

    Article  CAS  Google Scholar 

  7. J. C. Nappe, M. Benabdesselam, Ph. Grosseau, and B. Guilhot, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 100 (2011). https://doi.org/10.1016/j.nimb.2010.10.025

    Article  CAS  Google Scholar 

  8. A. Kozlovskiy, I. Kenzhina, Z. A. Alyamova, and M. Zdorovets, Opt. Mater. 91, 130 (2019). https://doi.org/10.1016/j.optmat.2019.03.014

    Article  CAS  Google Scholar 

  9. T. Gladkikh, A. Kozlovskiy, K. Dukenbayev, and M. Zdorovets, Mater. Charact. 150, 88 (2019). https://doi.org/10.1016/j.matchar.2019.02.013

    Article  CAS  Google Scholar 

  10. Y. Yang, C. A. Dickerson, and R. J. Allen Todd, Nucl. Mater. 392, 200 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.040

    Article  CAS  Google Scholar 

  11. L. Calcagno, A. Ruggiero, P. Musumeci, G. Cuttone, F. la Via, and G. Foti, Nucl. Instrum. Methods Phys. Res., Sect. B 257, 279 (2007). https://doi.org/10.1016/j.nimb.2007.01.035

    Article  CAS  Google Scholar 

  12. G. Litrico, M. Zimbone, G. Baratta, A. D. M. Marino, P. Musumeci, and L. Calcagno, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 2947 (2010). https://doi.org/10.1016/j.nimb.2010.05.015

    Article  CAS  Google Scholar 

  13. F. Garrido, S. Moll, G. Sattonnay, L. Thome, and L. Vincent, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1451 (2009). https://doi.org/10.1016/j.nimb.2009.01.070

    Article  CAS  Google Scholar 

  14. E. S. Demidov, N. A. Dobychin, V. V. Karzanov, M. O. Marychev, and V. V. Sdobnyakov, Semiconductors 43, 929 (2009). https://doi.org/10.1134/S1063782609070203

    Article  CAS  Google Scholar 

  15. V. S. Kovivchak, T. V. Panova, O. V. Krivozubov, N. A. Davletkildeev, and E. V. Knyazev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 244 (2012). https://doi.org/10.1134/S1027451012030123

    Article  CAS  Google Scholar 

  16. J. Musil, Surf. Coat. Technol. 207, 50 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.073

    Article  CAS  Google Scholar 

  17. J. Musil, G. Remnev, V. Legostaev, V. Uglov, A. Lebedynskiy, A. Lauk, J. Procházka, S. Haviar, and E. Smolyanskiy, Surf. Coat. Technol. 307, 1112 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.054

    Article  CAS  Google Scholar 

  18. A. Pélisson-Schecker, H. J. Hug, and J. Patscheider, Surf. Coat. Technol. 257, 114 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.053

    Article  CAS  Google Scholar 

  19. A. V. Kabyshev, F. V. Konusov, A. L. Lauk, A. M. Lebedynskiy, V. N. Legostaev, and E. A. Smolyanskiy, Key Eng. Mater. 712, 3 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.3

    Article  Google Scholar 

  20. F. V. Konusov, S. K. Pavlov, A. L. Lauk, A. V. Kabyshev, and R. M. Gadirov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 139 (2021) https://doi.org/10.1134/S1027451021010274

    Article  CAS  Google Scholar 

  21. F. Konusov, S. Pavlov, A. Lauk, V. Tarbokov, S. Karpov, V. Karpov, R. Gadirov, E. Kashkarov, and G. Remnev, Surf. Coat. Technol. 389, 125564 (2020). https://doi.org/10.1016/j.surfcoat.2020.125564

    Article  CAS  Google Scholar 

  22. F. Konusov, S. Pavlov, A. Lauk, V. Sokhoreva, R. Gadirov, V. Tarbokov, and G. Remnev, Radiat. Eff. Defects Solids 176, 308 (2021). https://doi.org/10.1080/10420150.2020.1832489

    Article  CAS  Google Scholar 

  23. G. E. Remnev, I. F. Isakov, M. S. Opekunov, V. M. Matvienko, V. A. Ryzhkov, V. K. Struts, I. I. Grushin, A. N. Zakoutayev, A. V. Potyomkin, V. A. Tarbokov, A. N. Pushkaryov, V. L. Kutuzov, and M. Yu. Ovsyannikov, Surf. Coat. Technol. 114, 206 (1999). https://doi.org/10.1016/S0257-8972(99)00058-4

    Article  CAS  Google Scholar 

  24. I. A. Weinstein, A. F. Zatsepin, and V. S. Kortov, Phys. Solid State 43, 246 (2001).

    Article  CAS  Google Scholar 

  25. M. Lamprecht, C. Grund, B. Neuschl, K. Thonke, Z. Bryan, R. Collazo, and Z. Sitar, J. Appl. Phys. 119, 155701 (2016). https://doi.org/10.1063/1.4946828

    Article  CAS  Google Scholar 

  26. L. Trinkler and B. Berzina, Radiat. Meas. 71, 232 (2014). https://doi.org/10.1016/j.radmeas.2014.02.016

    Article  CAS  Google Scholar 

  27. K. Irmscher, C. Hartmann, C. Guguschev, M. Pietsch, J. Wollweber, and M. Bickermann, J. Appl. Phys. 114, 123505 (2013). https://doi.org/10.1063/1.4821848

    Article  CAS  Google Scholar 

  28. . Silvestri, K. Dunn, S. Prawer, and F. Ladouceur, Europhys. Lett. 98, 36003 (2012). 10.1209/0295-5075/98/3600

    Article  CAS  Google Scholar 

  29. T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, and R. Fornari, Phys. Status Solidi B 248, 1513 (2011). https://doi.org/10.1002/pssb.201046616

    Article  CAS  Google Scholar 

  30. T. Koyama, M. Sugawara, T. Hoshi, A. Uedono, J. F. Kaeding, R. Sharma, S. Nakamura, and S. F. Chichibu, Appl. Phys. Lett. 90, 241914 (2007). https://doi.org/10.1063/1.2748315

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in the framework of the state task in scientific activity area no. FSWW-2020-0008; sample irradiation was supported by the Russian Foundation for Basic Research and State Corporation ROSATOM, project no. 20-21-00025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. V. Konusov or S. K. Pavlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konusov, F.V., Pavlov, S.K., Lauk, A.L. et al. Effect of the Content of Silicon on the Optical Properties of Al–Si–N Coatings Irradiated with Carbon Ions in the Short-Pulse Implantation Mode. J. Surf. Investig. 16, 702–711 (2022). https://doi.org/10.1134/S1027451022050081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050081

Keywords:

Navigation