Skip to main content
Log in

Nucleation and Coalescence of Isotropic Droplets in a Liquid-Crystal Matrix. The Role of Surfaces

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We investigate the influence of surface on the behavior of nematic and isotropic phases in flat liquid-crystal cells in the two-phase region at the nematic–isotropic liquid transition. At the first stage of the transition, the nucleation and growth of three-dimensional droplets occur. Then quasi-two-dimensional coalescence dominates. We investigate the dependence of the number of droplets on time and transformation of the size distribution of the droplets in the two-phase region. The dynamics of coalescence is studied when the influence of the surface of the cells dominates. From measurements of droplet shapes at the late stage of coalescence we estimate the energy of the nematic–isotropic liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

  2. L. M. Blinov, Liquid Crystals: Structure and Properties (Librokom, Moscow, 2013) [in Russian].

    Google Scholar 

  3. K. Diekmann, M. Schumacher, and H. Stegemeyer, Liq. Cryst. 25, 349 (1993). https://doi.org/10.1080/026782998206146

    Article  Google Scholar 

  4. E. Demikhov, H. Stegemeyer, and Th. Blumel, Phys. Rev. E 49, R4787 (1994). https://doi.org/10.1103/PhysRevE.49.R4787

    Article  CAS  Google Scholar 

  5. I. Dierking, J. Phys. Chem. B 104, 10642 (2000). https://doi.org/10.1021/jp002337t

    Article  CAS  Google Scholar 

  6. H. K. Chan and I. Dierking, J. Phys. Chem. B 111, 13382 (2007). https://doi.org/10.1021/jp074613a

    Article  CAS  Google Scholar 

  7. S. Kostromin, S. Bronnikov, E. Perju, and V. Cozan, J. Macromol. Sci., Part B: Phys. 51, 2105 (2012). https://doi.org/10.1080/00222348.2012.661679

    Article  CAS  Google Scholar 

  8. J.-C. Loudet, Liq. Cryst. Today 14, 1 (2005). https://doi.org/10.1080/14625180500137803

    Article  CAS  Google Scholar 

  9. P. Oswald and G. Poy, Phys. Rev. E 92, 062512 (2015). https://doi.org/10.1103/PhysRevE.92.062512

    Article  CAS  Google Scholar 

  10. P. Pieranski, Contemp. Phys. 24, 25 (1983). https://doi.org/10.1080/00107518308227471

    Article  CAS  Google Scholar 

  11. V. M. Masalov, K. A. Aldushin, P. V. Dolganov, and G. A. Emel’chenko, Phys. Low-Dimens. Struct. 5–6, 45 (2001).

    Google Scholar 

  12. I. I. Smalyukh, S. Chernyshuk, B. I. Lev, A. B. Nych, U. Ognysta, V. G. Nazarenko, and O. D. Lavrentovich, Phys. Rev. Lett. 93, 117807 (2004). https://doi.org/10.1103/PhysRevLett.93.117801

    Article  CAS  Google Scholar 

  13. W. H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980; Mir, Moscow, 1982).

  14. N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980). https://doi.org/10.1063/1.91359

    Article  CAS  Google Scholar 

  15. E. Demikhov, H. Stegemeyer, and V. Tsukruk, Phys. Rev. A 46, 4879 (1992). https://doi.org/10.1103/PhysRevA.46.4879

    Article  CAS  Google Scholar 

  16. P. V. Dolganov, G. S. Ksyonz, V. E. Dmitrienko, and V. K. Dolganov, Phys. Rev. E 87, 032506 (2013). https://doi.org/10.1103/PhysRevE.87.032506

    Article  CAS  Google Scholar 

  17. P. V. Dolganov, Phys. Rev. E 91, 042509 (2015). https://doi.org/10.1103/PhysRevE.91.042509

    Article  CAS  Google Scholar 

  18. P. V. Dolganov, K. D. Baklanova, and V. K. Dolganov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 829 (2021). https://doi.org/10.1134/S1027451021040261

    Article  CAS  Google Scholar 

  19. J. Schindelin, I. Arganda-Carreras, E. Frise, et al., Nat. Methods 9, 676 (2012). https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  20. M. Kleman and O. D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003; Fizmatlit, Moscow, 2007).

  21. L. D. Landau, E. M. Lifshits, and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  22. M. Patel, A. N. P. Radhakrishnan, L. Bescher, E. Hunter-Sellars, B. Schmidt-Hansberg, E. Amstad, S. Ibsen, and S. Guldin, Soft Matter 17, 947 (2021). https://doi.org/10.1039/D0SM01742F

    Article  CAS  Google Scholar 

  23. N. S. Shuravin, P. V. Dolganov, and V. K. Dolganov, Phys. Rev. E 99, 062702 (2019). https://doi.org/10.1103/PhysRevE.99.062702

    Article  CAS  Google Scholar 

  24. P. V. Dolganov, N. S. Shuravin, and V. K. Dolganov, Phys. Rev. E 101, 052701 (2020). https://doi.org/10.1103/PhysRevE.101.052701

    Article  CAS  Google Scholar 

  25. C. Klopp, T. Trittel, and R. Stannarius, Soft Matter 16, 4607 (2020). https://doi.org/10.1039/D0SM00457J

    Article  CAS  Google Scholar 

  26. C. Klopp and A. Eremin, Langmuir 36, 10615 (2020). https://doi.org/10.1021/acs.langmuir.0c02139

    Article  CAS  Google Scholar 

  27. P.-T. Brun, M. Nagel, and F. Gallaire, Phys. Rev. E 88, 043009 (2013). https://doi.org/10.1103/PhysRevE.88.043009

    Article  CAS  Google Scholar 

  28. U. Delabre, C. Richard, J. Meunier, and A.-M. Cazabat, Europhys. Lett. 83, 66004 (2008). https://doi.org/10.1209/0295-5075/83/66004

    Article  CAS  Google Scholar 

  29. M. Yu, R. B. Lira, K. A. Riske, R. Dimova, and H. Lin, Phys. Rev. Lett. 115, 128303 (2015). https://doi.org/10.1103/PhysRevLett.115.128303

    Article  CAS  Google Scholar 

  30. H. Wang, T. X. Wu, S. Gauza, J. R. Wu, and S.-T. Wu, Liq. Cryst. 33, 91 (2006). https://doi.org/10.1080/02678290500446111

    Article  CAS  Google Scholar 

  31. Brief Reference Book of Physical and Chemical Quantities, Ed. by A. A. Ravdel and A. M. Ponomareva, 8th ed. (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  32. G. W. Smith, N. A. Vaz, and T. H. Vansteenkiste, Mol. Cryst. Liq. Cryst. 174, 49 (1989). https://doi.org/10.1080/00268948908042694

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, project no. 18-12-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Dolganov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, P.V., Zverev, A.S., Spiridenko, N.A. et al. Nucleation and Coalescence of Isotropic Droplets in a Liquid-Crystal Matrix. The Role of Surfaces. J. Surf. Investig. 16, 586–591 (2022). https://doi.org/10.1134/S1027451022040243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040243

Keywords:

Navigation