Skip to main content
Log in

Aluminium Thin Film Surface Modification via Low-Pressure and Atmospheric-Pressure Argon Plasma Exposure

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Hydrophilicity of the aluminium thin film’s surface is one of the imperative surface characteristics needed for metal pad bonding process in microelectronic circuitries. In this paper, we present a study on the influence of argon plasma exposure on the surface properties of sputter-deposited aluminium thin film layer. The exposure of aluminium thin film layer in argon plasma at atmospheric pressure and low pressure are carried out and compared. The water contact angle and surface topology of the aluminium’s surface are inspected. The aluminium–gold metal–metal ohmic contact resistance and the aluminium thin film sheet resistivity are measured. Argon plasma has modified the originally hydrophobic aluminium’s surface into hydrophilic profile, which may be related to its increase of surface energy. Higher/smaller thin film surface roughness has been measured from the low-pressure/atmospheric-pressure argon plasma exposure that produces thin film with higher (9.64 Ω)/smaller (6.78 Ω) contact resistivity compared to the unexposed aluminium thin film layer (7.85 Ω). The argon plasma exposure treatment on the aluminium thin film has generally improved its surface properties, inducing hydrophilicity surface profile for the aluminium metal pad. The conducted treatment at the atmospheric pressure level specifically helps to reduce the surface roughness and increase the thin film layer conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. X. Zhu and Y. Pu, Plasma Sources Sci. Technol. 17, 024002 (2008). https://doi.org/10.1088/0963-0252/17/2/024002

    Article  CAS  Google Scholar 

  2. O. D. Greenwood, R. D. Boyd, and J. Hopkins, J. Adhes. Sci. Technol. 9, 311 (1995). https://doi.org/10.1163/156856195X00527

    Article  CAS  Google Scholar 

  3. M. R. Sanchis, O. Calvo, O. Fenollar, D. Garcia, and R. Balart, Polym. Test. 27, 75 (2008). https://doi.org/10.1016/j.polymertesting.2007.09.002

    Article  CAS  Google Scholar 

  4. R. V. Selyukov, M. O. Izyumov, and V. V. Naumov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 777 (2020). https://doi.org/10.1134/S1027451020040321

    Article  CAS  Google Scholar 

  5. K. L. Enisherlova, V. S. Kulikauskas, L. A. Seidman, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 684 (2015). https://doi.org/10.1134/S1027451015040084

    Article  CAS  Google Scholar 

  6. I. M. Misyura, I. O. Girka, V. T. Gritsyna, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1339 (2014). https://doi.org/10.1134/S1027451014040405

    Article  CAS  Google Scholar 

  7. A. M. Bakaeva, A. V. Bakaev, D. A. Terentyev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 163 (2018). https://doi.org/10.1134/S1027451017060039

    Article  CAS  Google Scholar 

  8. I. V. Borovitskaya, S. N. Korshunov, A. N. Mansurova, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 332 (2021). https://doi.org/10.1134/S102745102102021X

    Article  CAS  Google Scholar 

  9. A. V. Rogov, Y. V. Kapustin, V. M. Gureev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 563 (2021). https://doi.org/10.1134/S1027451021030307

    Article  CAS  Google Scholar 

  10. R. R. Elfa, N. Nafarizal, A. K. Ahamd, W. M. Kusnanto, S. F. Chin, S. M. Zanizan, M. M. Hafiz, A. M. Yazid, and A. Ali, Mater. Today: Proc. 7, 715 (2019). https://doi.org/10.1016/j.matpr.2018.12.066

    Article  CAS  Google Scholar 

  11. A. Sarani, N. D. Geyter, A. Y. Nikiforov, R. Morent, C. Leys, J. Hubert, and F. Reniers, Surf. Coat. Technol. 206, 2226 (2012). https://doi.org/10.1016/j.surfcoat.2011.09.070

    Article  CAS  Google Scholar 

  12. C. Niu, J. Han, S. Hu, X. Song, W. Long, D. Liu, and G. Wang, Appl. Surf. Sci. 536, 147819 (2020). https://doi.org/10.1016/j.apsusc.2020.147819

    Article  CAS  Google Scholar 

  13. T. S. M. Mui, L. L. G. Silva, V. Prysiazhnyi, and K. G. Kostov, Surf. Coat. Technol. 312, 32 (2017). https://doi.org/10.1016/j.surfcoat.2016.08.024

    Article  CAS  Google Scholar 

  14. A. Mai-prochnow, A. B. Murphy, K. M. Mclean, M. G. Kong, and K. Ken, Int. J. Antimicrob. Agents 43, 508 (2014). https://doi.org/10.1016/j.ijantimicag.2014.01.025

    Article  CAS  Google Scholar 

  15. P. Jongwoo, C. Hyun-Joon, K. Back-Sung, J. Yong-Bum, P. June-Kyun, K. Sam-Young, S. Sang-Cheol, S. Man-Young. O. Kyung-Il, and J. Hyungoo, IEEE Trans. Compon., Packag., Manuf. Technol. 30, 731 (2007). https://doi.org/10.1109/TCAPT.2007.906318

    Article  CAS  Google Scholar 

  16. I. Toru and S. Kenta, Mater. Trans. 6, 860 (2016). https://doi.org/10.2320/matertrans.MD201502

    Article  CAS  Google Scholar 

  17. R. Latif, M. F. Jaafar, M. F. Aziz, A. R. M. Zain, J. Yunas, and B. Y. Majlis, Int. J. Refract. Met. Hard Mater. 92, 105314 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105314

    Article  CAS  Google Scholar 

  18. R. Latif, M. F. Aziz, and B. Y. Majlis, Thin Solid Films 665, 17 (2018). https://doi.org/10.1016/j.tsf.2018.08.043

    Article  CAS  Google Scholar 

  19. A. Maroofi, N. N. Safa, and H. Ghomi, Int. J. Adhes. Adhes. 98, 102554 (2020). https://doi.org/10.1016/j.ijadhadh.2020.102554

    Article  CAS  Google Scholar 

  20. K. Nagashio and A. Toriumi, in Frontiers of Graphene and Carbon Nanotubes, Ed. by K. Matsumoto (Springer, Tokyo, 2015), p. 59. https://doi.org/10.1007/978-4-431-55372-4_5

    Book  Google Scholar 

  21. H. Marom and M. Eizenberg, J. Appl. Phys. 99, 123705 (2006). https://doi.org/10.1063/1.2204349

    Article  CAS  Google Scholar 

  22. D. Ketenoğlu and B. Ünal, Phys. A (Amsterdam, Neth.) 392 (14), 3008 (2013). https://doi.org/10.1016/j.physa.2013.03.007

Download references

Funding

The research was funded by the Ministry of Higher Education (MOHE), Fundamental Research Grant Scheme, FRGS/1/2021/TK0/UKM/02/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Latif.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samad, M.I., Nayan, N., Bakar, A.S. et al. Aluminium Thin Film Surface Modification via Low-Pressure and Atmospheric-Pressure Argon Plasma Exposure. J. Surf. Investig. 16, 421–426 (2022). https://doi.org/10.1134/S1027451022030387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030387

Keywords:

Navigation