Skip to main content
Log in

Formation of the Near-Surface Layer of a Triple Solid Solution in Wafers of Binary Compounds of Groups III–V due to Solid-Phase Substitution Reactions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The possibility of manufacturing semiconductor heterostructures based on III–V compounds for photovoltaic converters by diffusion methods is investigated. In a semiconductor wafer of the AB compound, a near-surface nanoscale layer of AB1 – xCx solid solution is formed due to the solid-phase substitution reactions of B atoms with C atoms supplied to the surface of the wafer in vapor form at 480–580°C for GaSb wafers and 670°C for GaAs wafers. The source of the C-element vapor were saturated solution melts based on Ga or In, or unsaturated Sn-based solution melts. The possibility of forming a p–n junction due to Zn diffusion into the n-type AB wafer simultaneously with the formation of an AB1 – xCx near-surface layer is investigated. The positive effect of GaSb1 – xAsx and GaSb1 – xPx near-surface layers on the luminescence characteristics of GaSb-based structures with simultaneous zinc diffusion is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Razeghi, The MOCVD Challenge: Survey of GaInAsP-InP and GaInAsP-GaAs for Photonic and Electronic Device Applications (CRC, Boca Raton, 2010).

    Book  Google Scholar 

  2. V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. Kh. Timoshina, N. S. Potapovich, B. Ya. Ber, D. Yu. Kazantsev, and V. M. Andreev, Semiconductiors 47, 307 (2013).

    Article  CAS  Google Scholar 

  3. V. J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). https://doi.org/10.1063/1.1368156

    Article  CAS  Google Scholar 

  4. V. M. Andreev, A. A. Vodnev, V. R. Larionov, T. P. Prutskikh, V. D. Rumyantsev, K. Ya. Rasulov, and V. P. Khvostikov, Fiz. Tekh. Poluprovodn. 23, 597 (1989).

    CAS  Google Scholar 

  5. M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).

    Article  CAS  Google Scholar 

  6. M. Binnewies and E. Milke, Thermochemical Data of Elements and Compounds, 2nd ed. (Wiley, Weinheim, 2002).

    Book  Google Scholar 

  7. V. I. Vasil’ev, G. S. Gagis, V. I. Kuchinskii, and V. G. Danil’chenko, Semiconductiors 49, 962 (2015).

    Article  Google Scholar 

  8. V. I. Vasil’ev, G. S. Gagis, K. K. Soboleva, and V. I. Kuchinskii, J. Phys.: Conf. Ser. 572, 012033 (2014). https://doi.org/10.1134/S1063782615070234

    Article  CAS  Google Scholar 

  9. G. S. Gagis, V. I. Vasi’ev, and V. I. Kuchinski, in Proc. Sixth Interdisciplinary Scientific Forum with International Participation “New Materials and Promising Technologies” (Moscow, 2020), Vol. 1, p. 525. https://n-materials.ru/wp-content/uploads/2021/07/2020-%D0%A2%D0%9E%D0%9C-1.pdf.

    Google Scholar 

  10. Physical Quantities: Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  11. A. S. Jordan, J. Electrochem. Soc. 119, 123 (1972).

    Article  CAS  Google Scholar 

  12. G. B. Stringfellow, J. Cryst. Growth 27, 21 (1974). https://doi.org/10.1016/S0022-0248(74)80047-3

    Article  CAS  Google Scholar 

  13. K. Nakajima, S. Yamazaki, S. Komiya, and K. Akita, J. Appl. Phys. 52, 4575 (1981). https://doi.org/10.1063/1.329333

    Article  CAS  Google Scholar 

  14. A. Mircea, R. Mellet, B. Rose, D. Robein, H. Thibierge, G. Leroux, P. Daste, S. Godefroy, P. Ossart, and A.-M. Pougnet, J. Electron. Mater. 15, 205 (1986). https://doi.org.//10.1007/BF02659633

    Article  CAS  Google Scholar 

  15. V. I. Vasil’ev, G. S. Gagis, V. I. Kuchinskii, V. P. Khvostikov, and E. P. Marukhina, Tech. Phys. Lett. 39, 472 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Diagnostic studies were performed using facilities of the Center of Joint Use “Materials Science and Diagnostics in Advanced Technologies” (Ioffe Institute).

Funding

The work was supported by the Ministry of Science and Higher Education (unique project identifier RFMEFI62119X0021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Vasil’ev or G. S. Gagis.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, V.I., Gagis, G.S. & Kuchinskii, V.I. Formation of the Near-Surface Layer of a Triple Solid Solution in Wafers of Binary Compounds of Groups III–V due to Solid-Phase Substitution Reactions. J. Surf. Investig. 16, 333–337 (2022). https://doi.org/10.1134/S1027451022030338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030338

Keywords:

Navigation