Skip to main content
Log in

Degradation of the Optical Properties of Two-Layer Hollow ZnO/SiO2 Particles after Irradiation with Protons

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comparative analysis of the diffuse reflectance spectra in the range of 200–2500 nm and their changes after the irradiation of bilayer hollow ZnO/SiO2 particles and bulk ZnO microparticles with 100 keV protons is carried out. Simulation of the effect of protons on an ensemble of hollow bilayer particles in the GEANT4 environment is presented. Analysis of the experimental and theoretical calculations shows that the radiation resistance of hollow ZnO/SiO2 particles is less than that of bulk ZnO microparticles. This effect of increasing the radiation resistance of hollow ZnO/SiO2 particles can be due to: their high specific surface, which is a sink of radiation-induced defects; the presence of a protective amorphous SiO2 layer on the surface of ZnO microspheres, which lead to a decrease in the concentration of absorption centers in ZnO, causing absorption in the visible range of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Yang, Y. Zhuang, Y. He, B. Bai, and X. Wang, Nano Res. 3, 581 (2010). https://doi.org/10.1007/s12274-010-0019-3

    Article  CAS  Google Scholar 

  2. A. Laurentowska and T. Jesionowski, Physicochem. Probl. Miner. Process. 48, 63 (2012).

    CAS  Google Scholar 

  3. A. C. Canbay and A. Aydogdu, Turk. J. Sci. Technol. 4, 121 (2009).

    Google Scholar 

  4. L. Dallali, S. Jaziri, and J. Martinez-Pastor, Solid State Commun. 209210, 33 (2015). https://doi.org/10.1016/j.ssc.2015.02.012

  5. A. Benchaabane, M. E. Hajlaoui, N. Hnainia, A. Al-Tabbakh, A. Zeinert, and H. Bouchriha, Opt. Mater. 102, 109829 (2020). https://doi.org/10.1016/j.optmat.2020.109829

    Article  CAS  Google Scholar 

  6. M. M. Mikhailov, V. V. Neshchimenko, and S. A. Yuriev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1315 (2014). https://doi.org/10.1134/S1027451014060366

    Article  CAS  Google Scholar 

  7. V. V. Neshchimenko, C. Li, M. M. Mikhailov, and J. Lv, Nanoscale 10, 22335 (2018). https://doi.org/10.1039/C8NR04455D

    Article  CAS  Google Scholar 

  8. A. N. Dudin, V. V. Neshchimenko, and V. Y. Yurina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 823 (2020). https://doi.org/10.1134/S1027451020040242

    Article  CAS  Google Scholar 

  9. S. Agostinelli, J. Allison, K. Amako, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  10. M. Fang and J. Lv, Mater. Lett. 255, 126538 (2019). https://doi.org/10.1016/j.matlet.2019.126538

    Article  CAS  Google Scholar 

  11. M. M. Mikhailov, V. V. Neshchimenko, N. V. Dedov, C. Li, and S. He, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 1152 (2011). https://doi.org/10.1134/S1027451011120093

    Article  CAS  Google Scholar 

  12. P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006). https://doi.org/10.1103/PhysRevB.73.205203

    Article  CAS  Google Scholar 

  13. F. Oba, A. Togo, I. Tanaka, J. Paier, G. Kresse, Phys. Rev. B 77, 245202 (2008). https://doi.org/10.1103/PhysRevB.77.245202

    Article  CAS  Google Scholar 

  14. S. A. M. Lima, F. A. Sigoli, M. Jr. Jafelicci, and M. R. Davolos, Int. J. Inorg. Mater. 3, 749 (2001). https://doi.org/10.1016/S1466-6049(01)00055-1

    Article  CAS  Google Scholar 

  15. J. Hu and B. C. Pan, J. Chem. Phys. 129, 154706 (2008). https://doi.org/10.1063/1.2993166

    Article  CAS  Google Scholar 

  16. Y. Sun and H. Wang, Phys. B (Amsterdam, Neth.) 325, 157 (2003). https://doi.org/10.1016/S0921-4526(02)01517-X

  17. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001). https://doi.org/10.1063/1.1394173

    Article  CAS  Google Scholar 

  18. A. F. Zatsepin, V. S. Kortov, and D. Y. Biryukov, Radiat. Eff. Defects Solids 157, 595 (2002). https://doi.org/10.1080/10420150215765

    Article  CAS  Google Scholar 

  19. R. Boscaino, M. Cannas, F. M. Gelardi, and M. Leone, Nucl. Instrum. Methods. Phys. Res., Sect. B 116, 373 (1996). https://doi.org/10.1016/0168-583X(96)00073-0

    Article  CAS  Google Scholar 

  20. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998). https://doi.org/10.1016/S0022-3093(98)00720-0

    Article  CAS  Google Scholar 

  21. H. Nishikawa, E. Watanabe, D. Ito, and Y. Ohki, J. Non-Cryst. Solids 179, 179 (1994). https://doi.org/10.1016/0022-3093(94)90695-5

    Article  CAS  Google Scholar 

  22. S. T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S. N. Rashkeev, D. M. Fleetwood, and R. D. Schrimpf, J. Non-Cryst. Solids 354, 217 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.080

    Article  CAS  Google Scholar 

  23. R. A. B. Radtsig and I. N. Senchenya, Russ. Chem. Bull. 45, 1849 (1996). https://doi.org/10.1007/BF01457762

    Article  Google Scholar 

  24. J. R. Chavez, S. P. Kara, K. Vahneusden, C. P. Brothers, R. D. Pugh, B. K. Singaraju, and R. A. B. Devine, IEEE Trans. Nucl. Sci. 44, 1799 (1997).

    Article  CAS  Google Scholar 

  25. S. Karazhanov, P. Ravindran, H. Fjellvag, and B. G. Svensson, J. Appl. Phys. 106, 123701 (2010). https://doi.org/10.1063/1.3268445

    Article  CAS  Google Scholar 

  26. V. V. Neshchimenko and M. M. Mikhailov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tec. 13, 1192 (2019). https://doi.org/10.1134/S1027451019060442

    Article  CAS  Google Scholar 

  27. C. Li, M. M. Mikhailov, and V. V. Neshchimenko, Nucl. Instrum. Methods Phys. Res., Sect B 319, 123 (2014). https://doi.org/10.1016/j.nimb.2013.11.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dudin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudin, A.N., Neshchimenko, V.V. & Li, C. Degradation of the Optical Properties of Two-Layer Hollow ZnO/SiO2 Particles after Irradiation with Protons. J. Surf. Investig. 15 (Suppl 1), S173–S178 (2021). https://doi.org/10.1134/S1027451022020288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020288

Keywords:

Navigation