Skip to main content
Log in

Black Anodic ZnO Film on Galvanized Steel Using Mixed Electrolyte of Ca(OH)2–KOH–NaOH

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Corrosion resistant black anodic passive film, composed of crystalline ZnO structures, was successfully fabricated on a galvanized surface by room-temperature and low-voltage anodization route using an eco-friendly and cost-effective mixed electrolyte without any surface treatments. In addition, the properties and corrosion resistance of ZnO passive films fabricated by other methods were compared with those of anodic ZnO films. It was found that the anti-corrosive properties of ZnO films were significantly influenced by the chemical composition of the surface, surface roughness and wetting behaviour. Experimental results showed that hydrophilic anodic films (surface energy γ = 17.3 mN/m and adhesion Wst = 70.6 mN/m) could effectively enhance corrosion resistance of galvanized steel. In addition, it was found that film porosity and thickness also played a critical role in the corrosion resistance of anodic ZnO films. The porosity and thickness of the anodic films increased with anodizing time, and a dense anodic film with a thickness of 668 nm was fabricated at 10 V for 30 min in a mixed electrolyte, and this one showed the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gh. B. Darband, A. Afshar, and A. Aliabadi, Surf. Coat. Technol. 306, 497 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.089

  2. T. Naing, S. Janudom, V. Rachpech, N. Mahathaninwonga, and S. Thiwong, Key Eng. Mater. 803, 45 (2019). doi 10.4028/www.scientific.net/KEM.803.45

  3. L. Hernández and S. L. Rodriguez Reyna, Int. J. Corros. 2012, 368130 (2012). https://doi.org/10.1155/2012/368130

    Article  CAS  Google Scholar 

  4. M. Sánchez, M. C. Alonso, P. Cecílio, M. F. Montemor, and C. Andrade, Cem. Concr. Compos. 28, 256 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.004

    Article  CAS  Google Scholar 

  5. S. Jegannathan, T. S. N. Sankara Narayanan, K. Ravichandran, and S. Rajeswari, Electrochim. Acta 51, 247 (2005). https://doi.org/10.1016/j.electacta.2005.04.020

    Article  CAS  Google Scholar 

  6. D. Wang and G. P. Bierwagen, Prog. Org. Coat. 64, 327 (2009). https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  7. K. S. Aneja, S. Bohm, A. S. Khanna, and H. L. M. Bohm, Nanoscale 7, 17879 (2015). https://doi.org/10.1039/C5NR04702A

    Article  CAS  Google Scholar 

  8. S. J. Kim, J. Lee, and J. Choi, Electrochim. Acta 53, 7941 (2008). https://doi.org/10.1016/j.electacta.2008.06.006

    Article  CAS  Google Scholar 

  9. D. Landolt, Corrosion and Surface Chemistry of Metals (EPFL, New York, 2007). https://doi.org/10.1201/9781439807880

    Book  Google Scholar 

  10. G. S. Huang, X. L. Wu, Y. C. Cheng, J. C. Shen, A. P. Huang, and P. K. Chu, Appl. Phys. A 86, 463 (2007). https://doi.org/10.1007/s00339-006-3778-7

    Article  CAS  Google Scholar 

  11. M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, and C.-C. Wu, Appl. Surf. Sci. 360, 442 (2016). https://doi.org/10.1016/j.apsusc.2015.09.174

    Article  CAS  Google Scholar 

  12. S. He, M. Zheng, L. Yao, X. Yuan, M. Li, L. Ma, and W. Shen, Appl. Surf. Sci. 256, 2557 (2010). https://doi.org/10.1016/j.apsusc.2009.10.104

    Article  CAS  Google Scholar 

  13. A. Ramirez-Canon, D. O. Miles, P. J. Cameron, and D. Mattia, RSC Adv. 3, 25323 (2013). https://doi.org/10.1039/C3RA43886D

  14. P. Gao and Z. L. Wang, J. Phys. Chem. B 106, 12653 (2002). https://doi.org/10.1021/jp0265485

    Article  CAS  Google Scholar 

  15. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, 291, 1947 (2001). https://doi.org/10.1126/science.1058120

    Article  CAS  Google Scholar 

  16. H.-S. Goh, R. Adnan, and M. A. Farrukh, Turk. J. Chem. 35, 375 (2011). https://doi.org/10.3906/kim-1010-742

    Article  CAS  Google Scholar 

  17. S. Sreekantan, L. R. Gee, and Z. Lockman, J. Alloys Compd. 476, 513 (2009). https://doi.org/10.1016/j.jallcom.2008.09.044

    Article  CAS  Google Scholar 

  18. S. A. Ajeel and B. Ahmed, Eng. Technol. J. A 35, 961 (2017).

    Google Scholar 

  19. T. H. Naing, S. Janudom, V. Rachpech, N. Mahathaninwong, and S. Thiwong, Mater. Res. Express 6, 116415 (2019). https://doi.org/10.1088/2053-1591/ab45b2

    Article  CAS  Google Scholar 

  20. T. H. Naing, V. Rachpech, S. Janudom, and N. Mahathaninwong, J. Coat. Technol. Res. 17, 1537 (2020). https://doi.org/10.1007/s11998-020-00372-x

    Article  CAS  Google Scholar 

  21. L. Zaraska, K. Mika, K. E. Hnida, M. Gajewska, T. Łojewski, M. Jaskuła, and G. D.Sulka, Mater. Sci. Eng. B 226, 94 (2017). https://doi.org/10.1016/j.mseb.2017.09.003

    Article  CAS  Google Scholar 

  22. S. Mridha and D. Basak, Mater. Res. Bull. 42, 875 (2007). https://doi.org/10.1016/j.materresbull.2006.08.019

    Article  CAS  Google Scholar 

  23. E. Rocca, D. Veys-Renaux, and K. Guessoum, J. Electroanal. Chem. 754, 125 (2015). .https://doi.org/10.1016/j.jelechem.2015.06.021

    Article  CAS  Google Scholar 

  24. M.-C. Huang, T. Wang, B.-J. Wu, J.-C. Lin, and C.-C. Wu, Appl. Surf. Sci. 360, 442 (2016). https://doi.org/10.1016/j.apsusc.2015.09.174

    Article  CAS  Google Scholar 

  25. A. B. Radwan, A. M. Abdullah, and N. A. Alnuaimi, Corros. Rev. 36, 127 (2018). https://doi.org/10.1515/corrrev-2017-0012

    Article  CAS  Google Scholar 

  26. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936). https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  27. M. D. L. Balela, R. A. Acedera, C. L. I. Flores, and C. M. O. Pelicano, Surf. Coat. Technol. 340, 199 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.055

    Article  CAS  Google Scholar 

  28. W. Wu, M. Chen, S. Liang, X. Wang, J. Chen, and F. Zhou, J. Colloid Interface Sci. 326, 478 (2008). https://doi.org/10.1016/j.jcis.2008.06.041

    Article  CAS  Google Scholar 

  29. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944). https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  30. L. Wu, J. Liu, M. Yu, S. Li, H. Liang, and M. Zhu, Int. J. Electrochem. Sci. 9, 5012 (2014).

    Google Scholar 

  31. R. P. S. Chakradhar and V. Dinesh Kumar, Spectrochim. Acta, Part A 94, 352 (2012). https://doi.org/10.1016/j.saa.2012.03.079

    Article  CAS  Google Scholar 

  32. A. B. Gurav, S. S. Latthe, R. S. Vhatkar, J.-G. Lee, D.-Y. Kim, J.-J. Park, and S. S. Yoon, Ceram. Int. 40, 7151 (2014). https://doi.org/10.1016/j.ceramint.2013.12.052

    Article  CAS  Google Scholar 

  33. J. Dong, Z. Liu, J. Dong, D. Ariyanti, Z. Niu, S. Huang, W. Zhang, and W. Gao, RSC Adv. 6, 72968 (2016). https://doi.org/10.1039/C6RA16995C

  34. A. Achour, M. A. Soussou, K. A. Aissa, M. Islam, N. Barreau, E. Faulques, L. L. Brizoual, M. A. Djouadi, and M. Boujtita, Thin Solid Films 571, 168 (2014). https://doi.org/10.1016/j.tsf.2014.10.061

    Article  CAS  Google Scholar 

  35. S. Xu and Z. L. Wang, Nano Res. 4 (11), 1013 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  36. S. E. Pust, J.-P. Becker, J. Worbs, S. O. Klemm, K. J. J. Mayrhofer, and J. Hüpkes, J. Electrochem. Soc. 158, D413 (2011). https://doi.org/10.1149/1.3583636

    Article  CAS  Google Scholar 

  37. J. Hüpkes, J. I. Owen, S. E. Pust, and E. Bunte, ChemPhysChem 13, 66 (2012). https://doi.org/10.1002/cphc.201100738

    Article  CAS  Google Scholar 

  38. J.-P. Becker, S. E. Pust, and J. Hüpkes, Electrochim. Acta 112, 976 (2013). https://doi.org/10.1016/j.electacta.2013.04.167

    Article  CAS  Google Scholar 

  39. E. Vazirinasab, R. Jafari, and G. Momen, Surf. Coat. Technol. 341, 40 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.053

    Article  CAS  Google Scholar 

  40. J. Ou, M. Liu, W. Li, F. Wang, M. Xue, and C. Li, Appl. Surf. Sci. 258, 4724 (2012). https://doi.org/10.1016/j.apsusc.2012.01.066

    Article  CAS  Google Scholar 

  41. T. Liu, S. Chen, S. Cheng, J. Tian, X. Chang, and Y. Yin, Electrochim. Acta 52 (28), 8003 (2007). https://doi.org/10.1016/j.electacta.2007.06.072

    Article  CAS  Google Scholar 

  42. W. Xu, X. Shi, and S. Lu, Mater. Chem. Phys. 129, 1042 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.053

    Article  CAS  Google Scholar 

  43. L. Chai, X. Yu, Z. Yang, Y. Wang, and M. Okido, Corros. Sci. 50, 3274 (2008). https://doi.org/10.1016/j.corsci.2008.08.038

    Article  CAS  Google Scholar 

  44. G.-L. Song and Z. Shi, Corros. Sci. 85, 126 (2014). https://doi.org/10.1016/j.corsci.2014.04.008

    Article  CAS  Google Scholar 

  45. A. Maciej, A. Wadas, M. Sowa, R. Socha, G. Dercz, M. Rabe, and W. Simka, Corros. Sci. 158, 108107 (2019). https://doi.org/10.1016/j.corsci.2019.108107

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge Center of Excellence in Mining and Materials Engineering (CEMME), Faculty of Engineering, Prince of Songkla University (PSU). Also sincere thanks go to the Prince of Songkla University (Contract nos. ENG610407S and ENG6201029S) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Janudom.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naing, T.H., Janudom, S., Rachpech, V. et al. Black Anodic ZnO Film on Galvanized Steel Using Mixed Electrolyte of Ca(OH)2–KOH–NaOH. J. Surf. Investig. 15 (Suppl 1), S104–S111 (2021). https://doi.org/10.1134/S1027451022020161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020161

Keywords:

Navigation