Skip to main content

Effect of Nanostructuring of the Surface of a Lead Sulfide Crystal in Plasma on the Optical Reflection Spectra

Abstract

A study of the optical-reflection spectra (250–2500 nm) for the surface of lead sulfide crystals in the initial state and after the formation of a homogeneous ensemble of nanostructures is conducted. Single crystals of PbS are grown using the vertical-zone-melting method, with the [100] orientation along the growth axis. Surface nanostructuring is realized in a reactor of high-density argon plasma with a low-pressure high-frequency inductive discharge (13.56 МHz) at the ion energy ~200 eV. The uniform array of stepped lead sulfide nanostructures formed due to plasma treatment is up to 140 nm in height, with cruciform bases having ❬100❭-oriented lateral orthogonal elements 20–60 nm long. It is found that the specular-reflection- and diffuse-reflection spectra for the initial surface of the (100) PbS crystals and for that nanostructured in argon plasma differ significantly. Using the Kubelka–Munk theory of diffuse reflection and the Kumar theory of specular reflection, the band-gap value for the nanostructured surface of (100) PbS crystals is determined as 3.45–3.47 eV, exceeding the value for the initial surface of lead sulfide ~0.4 eV.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Methods to Study of Semiconductors as Applied to Lead Chalcogenides PbTe, PbSe, PbS (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  2. T. Fu, Sens. Actuators, B 140, 116 (2009). https://doi.org/10.1016/j.snb.2009.03.075

    CAS  Article  Google Scholar 

  3. A. Carrillo-Castillo, A. Salas-Villasenor, I. Mejia, S. Aguirre-Tostado, B. E. Gnade, and M. A. Quevedo-López, Thin Solid Films 520, 3107 (2012). https://doi.org/10.1016/j.tsf.2011.12.016

    CAS  Article  Google Scholar 

  4. R. Thielsch, T. Böhme, R. Reiche, D. Schläfer, H.-D. Bauer, and H. Böttcher, Nanostruct. Mater. 10, 131 (1998). https://doi.org/10.1016/S0965-9773(98)00056-7

    CAS  Article  Google Scholar 

  5. T. Blachowicz and A. Ehrmann, Appl. Sci. 10, 1743 (2020). https://doi.org/10.3390/app10051743

    CAS  Article  Google Scholar 

  6. N. Sukharevska, D. Bederak, V. M. Goossens, J. Momand, H. Duim, D. N. Dirin, M. V. Kovalenko, B. J. Kooi, and M. A. Loi, ACS Appl. Mater. Interfaces 13, 5195 (2021). https://doi.org/10.1021/acsami.0c18204

    CAS  Article  Google Scholar 

  7. M. Ibáñez, Z. Luo, A. Genç, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhan, Y. Liu, M. Nachtegaal, M. Zebarjadi, J. Arbiol, M. V. Kovalenko, and A. Cabot, Nat. Commun. 7, 10766 (2016). https://doi.org/10.1038/ncomms10766

    CAS  Article  Google Scholar 

  8. X. Zhang, Y. Chen, L. Lian, Z. Zhang, Y. Liu, L. Song, C. Geng, J. Zhang, and S. Xu, Nano Res. 14, 628 (2021). https://doi.org/10.1007/s12274-020-3081-5

    CAS  Article  Google Scholar 

  9. S. Zimin, E. Gorlachev, and I. Amirov, “Inductively coupled plasma sputtering: Structure of IV–VI semiconductors,” in Encyclopedia of Plasma Technology, Ed. by J. Leon Shohet (Taylor and Francis, New York, 2017).

    Google Scholar 

  10. P. Yin, R. Zhang, Y. Zhang, and L. Guo, Int. J. Mod. Phys. B 24, 3257 (2010). https://doi.org/10.1142/s0217979210066422

    CAS  Article  Google Scholar 

  11. A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Opt. Spectrosc. 109, 268 (2010). https://doi.org/10.1134/s0030400x10080199

    CAS  Article  Google Scholar 

  12. K. S. Upadhyaya, M. Yadav, and G. K. Upadhyaya, Phys. Status Solidi B 229, 1129 (2002). https://doi.org/10.1002/1521-3951(200202)229:3<1129: aid-pssb1129>3.0.co;2-6

  13. Y. Batonneau, C. Bremard, J. Laureyns, and J. C. Merlin, J. Raman Spectrosc. 31, 1113 (2000). https://doi.org/10.1002/1097-4555(200012)31:12<1113: aid-jrs653>3.0.co;2-e

  14. G. De Giudici, P. Ricci, P. Lattanzi, and A. Anedda, Am. Mineral. 92, 518 (2007). https://doi.org/10.2138/am.2007.2181

    CAS  Article  Google Scholar 

  15. O. Semeniuk, A. Csik, S. Kokenyesi, and A. Reznik, J. Mater. Sci. 52, 7937 (2017). https://doi.org/10.1007/s10853-017-0998-5

    CAS  Article  Google Scholar 

  16. H. Miyagawa, D. Kamiya, C. Sato, and K. Ikegami, J. Mater. Sci. 34, 105 (1999). https://doi.org/10.1023/a:1004421826443

    CAS  Article  Google Scholar 

  17. M. Cortez-Valadez, A. Vargas-Ortiz, L. Rojas-Blanco, H. Arizpe-Chávez, M. Flores-Acosta, and R. Ramírez-Bon, Phys. E (Amsterdam, Neth.) 53, 146 (2013). https://doi.org/10.1016/j.physe.2013.05.006

  18. M. Cardona and D. L. Greenaway, Phys. Rev. A 133, A1685 (1964). https://doi.org/10.1103/physrev.133.a1685

    Article  Google Scholar 

  19. S. E. Kohn, P. Y. Yu, Y. Petroff, Y. R. Shen, Y. Tsang, and M. L. Cohen, Phys. Rev. B 8, 1477 (1973). https://doi.org/10.1103/PhysRevB.8.1477

    CAS  Article  Google Scholar 

  20. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948). https://doi.org/10.1364/josa.38.000448

    CAS  Article  Google Scholar 

  21. K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, and W.-C. Oh, J. Ind. Eng. Chem. 20, 1035 (2014). https://doi.org/10.1016/j.jiec.2013.06.040

    CAS  Article  Google Scholar 

  22. A. V. Stanchik, V. F. Gremenok, R. Juskenas, I. I. Tyukhov, M. S. Tivanov, Ch. Fettkenhauer, V. V. Shvartsman, R. Giraitis, U. Hagemann, and D. C. Lupascu, Sol. Energy 178, 142 (2019). https://doi.org/10.1016/j.solener.2018.12.025

    CAS  Article  Google Scholar 

  23. K. K. Nanda, F. E. Kruis, H. Fissan, and M. Acet, J. Appl. Phys. 91, 2315 (2002). https://doi.org/10.1063/1.1431429

    CAS  Article  Google Scholar 

  24. Z. Q. Mamiyev and N. O. Balayeva, Opt. Mater. 46, 522 (2015). https://doi.org/10.1016/j.optmat.2015.05.017

    CAS  Article  Google Scholar 

  25. V. Kumar, S. Kr. Sharma, T. Sharma, and V. Singh, Opt. Mater. 12, 115 (1999). https://doi.org/10.1016/s0925-3467(98)00052-4

    CAS  Article  Google Scholar 

  26. J. Vipin Kumar, M. K. Gaur, and T. P. Sharma, J. Optoelectron. Biomed. Mater. 1, 52 (2009).

    Google Scholar 

  27. S. K. Sharma, L. Kumar, and T. P. Sharma, Chalcogenide Lett. 5 (4), 73 (2008).

    CAS  Google Scholar 

  28. M. Tivanov, I. Kaputskaya, A. Patryn, A. Saad, L. Survilo, and E. Ostretsov, Electr. Rev. 92 (9), 88 (2016). https://doi.org/10.15199/48.2016.09.23

    Article  Google Scholar 

  29. B. G. Zaragoza-Palacios, A. R. Torres-Duarte, and S. J. Castillo, Res. Square 1, 1 (2021). https://doi.org/10.21203/rs.3.rs-271679/v1

    Article  Google Scholar 

  30. H. Jung, R. Kuljic, M. A. Stroscio, and M. Dutta, Appl. Phys. Lett. 96, 153106 (2010). https://doi.org/10.1063/1.3400215

    CAS  Article  Google Scholar 

Download references

Funding

The work was performed within the State assignment of the RF Ministry of Science and Higher Education for the  Valiev Institute of Physics and Technology, Russian Academy of Sciences, program no. 0066-2019-0002; the State assignment of the RF Ministry of Science and Higher Education for the Institute of Solid State Physics, Russian Academy of Sciences; initiative research of Yaroslavl State University, and State Research Program of the Republic of Belarus “Material Science, Innovative Materials and Technologies.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Zimin or M. S. Tivanov.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zimin, S.P., Kolesnikov, N.N., Tivanov, M.S. et al. Effect of Nanostructuring of the Surface of a Lead Sulfide Crystal in Plasma on the Optical Reflection Spectra. J. Surf. Investig. 16, 134–139 (2022). https://doi.org/10.1134/S1027451022010384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010384

Keywords:

  • lead sulfide
  • ion-plasma treatment
  • nanostructures
  • optical-reflection spectra
  • quantum-confinement effects