Skip to main content
Log in

Influence of the Structure of Ion Tracks in YBCO on the Superconducting Properties of Composite Wires

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure of radiation defects – tracks is studied in a 1 µm thick YBa2Cu3O6 + δ layer in composite tapes irradiated with Xe and Kr ions with energies in the range 0.1–0.8 MeV/nucleon. It is shown that the irradiation of YBa2Cu3O6 + δ with ions of various energies leads to the creation of continuous (highest ion energies) and discontinuous ion tracks (created by ions with intermediate energies) with an amorphous structure. The density of the material inside the track is almost two times lower than the density of the pristine YBa2Cu3O6 + δ crystal. It has been found that almost spherical fragments of discontinuous tracks with a diameter of about 5 nm are most effective for immobilization of vortex lines and contribute to an increase in the critical current density in magnetic fields up to 9 T in the temperature range 4.2–77 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995). https://doi.org/10.1088/0034-4885/58/11/003

    Article  CAS  Google Scholar 

  2. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, Nat. Mater. 6, 631 (2007). https://doi.org/10.1038/nmat1989

    Article  CAS  Google Scholar 

  3. M. Miura, B. Maiorov, S. A. Baily, N. Haberkorn, J. O. Willis, K. Marken, T. Izumi, Y. Shiohara, and L. Civale, Phys. Rev. B 83, 184519 (2011). https://doi.org/10.1103/PhysRevB.83.184519

    Article  CAS  Google Scholar 

  4. X. Obradors, T. Puig, A. Palau, A. Pomar, F. Sandiumenge, P. Mele, and K. Matsumoto, in Nanostructured Superconductors with Efficient Vortex Pinning, Ed. by D. L. Andrews (Academic, New York, 2011), p. 303. https://doi.org/10.1016/B978-0-12-374396-1.00112-4

    Book  Google Scholar 

  5. J. F. Ziegler and J. P. Biersack, SRIM, 2013. http://www.srim.org/SRIM/SRIMLEGL.htm.

  6. E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 55, 283 (1989). https://doi.org/10.1063/1.102387

    Article  CAS  Google Scholar 

  7. P. Stadelmann, JEMS: Java Electron Microscopy, 2021. http://www.jems-jongny.ch.

  8. E. I. Suvorova, O. V. Uvarov, A. V. Ovcharov, I. A. Karateev, A. L. Vasiliev, V. A. Skuratov, and P. A. Buffat, Philos. Mag. 98, 3127 (2018). https://doi.org/10.1080/14786435.2018.1521013

    Article  CAS  Google Scholar 

  9. E. I. Suvorova, M. Cantoni, P. A. Buffat, A. Yu. Didyk, L. Kh. Antonova, A. V. Troitskii, G. N. Mikhailova, Acta Mater. 75, 71 (2014). https://doi.org/10.1016/j.actamat.2014.04.042

    Article  CAS  Google Scholar 

  10. D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13060 (1993). https://doi.org/10.1103/PhysRevB.48.13060

    Article  CAS  Google Scholar 

  11. S. Hébert, V. Hardy, M. Hervieu, G. Villard, Ch. Simon, and J. Provost, Nucl. Instrum. Methods Phys. Res., Sect. B 146, 545 (1998). https://doi.org/10.1016/S0168-583X(98)00493-5

    Article  Google Scholar 

  12. G. Fuchs, F. Studer, B. Balanzat, D. Groult, M. Toulemonde, and J. Jousset, Europhys. Lett. 3, 321 (1987). https://doi.org/10.1209/0295-5075/3/3/012

    Article  CAS  Google Scholar 

  13. R. Weinstein, A. Gandini, R.-P. Sawh, D. Parks, and B. Mayes, Phys. C (Amsterdam, Neth.) 387, 391 (2003). https://doi.org/10.1016/S0921-4534(02)02361-4

  14. R. Weinstein, R.-P. Sawh, D. Parks, and B. Mayes, Nucl. Instrum. Methods Phys. Res., Sect. B 272, 284 (2012). https://doi.org/10.1016/j.nimb.2011.01.084

    Article  CAS  Google Scholar 

  15. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 61, 1221 (1971).

    Google Scholar 

  16. K. Matsumoto and P. Mele, Supercond. Sci. Technol. 23, 014001 (2010). https://doi.org/10.1088/0953-2048/23/1/014001

    Article  CAS  Google Scholar 

  17. E. I. Suvorova, P. N. Degtyarenko, I. A. Karateev, A. V. Ovcharov, A. L. Vasiliev, V. A. Skuratov, and P. A. Buffat, Appl. Phys. 126, 145106 (2019). https://doi.org/10.1063/1.5120894

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Skuratov and his colleagues from the Laboratory of Nuclear Reactions for the preparation of irradiated samples, as well as A.V. Troitsky for measuring the critical current as a function of fluences.

Funding

This work was supported by the RF Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Suvorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvorova, E.I., Degtyarenko, P.N., Ovcharov, A.V. et al. Influence of the Structure of Ion Tracks in YBCO on the Superconducting Properties of Composite Wires. J. Surf. Investig. 16, 112–117 (2022). https://doi.org/10.1134/S1027451022010360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010360

Keywords:

Navigation