Skip to main content
Log in

Structural-Phase Transformation in Rapidly Quenched Al–Ni–Y Ribbons under Thermal and Pressure Effects

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Comparative investigations of the crystallization of rapidly quenched Al90Y10 and Al87Ni8Y5 ribbons under thermal and deformation effects are carried out by the methods of differential scanning calorimetry and X-ray structural analysis. It is shown that during continuous heating, crystallization of the rapidly quenched Al90Y10 and Al87Ni8Y5 ribbons begins with the formation of a supersaturated solid solution based on α-Al. Moreover, for upon the subsequent heating of the Al90Y10 ribbon, the transition to the crystalline state proceeds through an intermediate stage to form the metastable phase, Al4Y. It is shown that under the action of severe plastic deformation by high-pressure torsion (HPT), at a pressure of 3 GPa with rotation from 0 to 12 revolutions, complete crystallization of these rapidly quenched ribbons does not occur. Crystallization of the Al90Y10 ribbon initiated by deformation proceeds with the formation of the Al4Y metastable phase (after 1 revolution) and the Al2Y phase (after 4 revolutions), while the formation of the latter is not observed in the process of continuous heating of the initial ribbon. Crystallization of the Al87Ni8Y5 ribbon under the action of HPT proceeds with the formation of α-Al crystals after 1 revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. M. Freitag, R. G. Koknaev, R. Sabet-Sharghi, M. Koknaeva, and Z. Altounian, J. Appl. Phys. 79, 3967 (1996). https://doi.org/10.1063/1.361824

    Article  CAS  Google Scholar 

  2. H. S. Kim, P. J. Warren, B. Cantor, and H. R. Lee, Nanostruct. Mater. 11, 241 (1999).

    Article  CAS  Google Scholar 

  3. G. E. Abrosimova, Phys.—Usp. 54, 1227 (2011). https://doi.org/10.3367/UFNe.0181.201112b.1265

    Article  Google Scholar 

  4. F. C. Li, T. Liu, J. Y. Zhang, S. Shuang, Q. Wang, A. D. Wang, J. G. Wang, and Y. Yang, Mater. Today Adv. 4, 100027 (2019). https://doi.org/10.1016/j.mtadv.2019.100027

    Article  Google Scholar 

  5. S. Y. Kim, G. Y. Lee, G. H. Park, H. A. Kim, A-Y. Lee, S. Scudino, K. G. Prashanth, D. H. Kim, J. Eckert, and M. H. Lee, Sci. Rep. 8, 1090 (2018). https://doi.org/10.1038/s41598-018-19337-7

    Article  CAS  Google Scholar 

  6. L. Boichykhyn, M. Kovbuz, O. Hertsyk, V. Nosenko, and B. Kotur, Phys. Solid State 55, 243 (2013).

    Article  Google Scholar 

  7. A. Inoue and H. Kimura, J. Light Met. 1, 31 (2001). https://doi.org/10.1016/S1471-5317(00)00004-3

    Article  Google Scholar 

  8. A. F. Belov, G. P. Benediktova, A. S. Viskov, V. V. Nikolenko, G. E. Vishnevskii, L. I. Gerasimova, M. G. Karpman, A. A. Klypin, T. S. Morozova, A. Ya. Potemkin, E. V. Ryabchenko, V. S. Teren’t’eva, and Yu. P. Frolov, Structure and Properties of Aviation Materials (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  9. D. V. Louzguine and A. Inoue, J. Non-Cryst. Solids 311, 281 (2002). https://doi.org/10.1016/S0022-3093(02)01375-3

    Article  CAS  Google Scholar 

  10. E. A. Pechina, S. M. Ivanov, V. I. Lad’yanov, D. I. Chukov, G. A. Dorofeev, E. V. Kuz’minykh, and M. I. Mokrushina, Russ. Metall. 2014, 846 (2014).

    Article  Google Scholar 

  11. P. Rizzi and L. Battezzati, J. Alloys Compd. 434–435, 36 (2007). https://doi.org/10.1016/j.jallcom.2006.08.186

    Article  CAS  Google Scholar 

  12. M. Wollgartenz, K. L. Sahoo, J. Haug, and J. Banhart, Mater. Sci. Eng., A 449–451, 1049 (2007). https://doi.org/10.1201/9781351045636-140000245

    Article  CAS  Google Scholar 

  13. P. N. H. Nakashima, Encyclopedia of Aluminum and Its Alloys (CRC, Boca Raton, 2018).

    Google Scholar 

Download references

FUNDING

The study was financially supported by the Russian Science Foundation (grant no. 19-12-00022). We are grateful to V. C. Nosenko (Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine) for assistance in obtaining rapidly quenched Al90Y10 and Al87Ni8Y5, and also to S. M. Ivanov and E. A. Pechina (Institute of Physics and Technology, Ural Branch, Russian Academy of Sciences) for help in conducting SPDT of rapidly quenched ribbons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sterkhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterkhova, I.V., Lad’yanov, V.I., Sidorov, V.E. et al. Structural-Phase Transformation in Rapidly Quenched Al–Ni–Y Ribbons under Thermal and Pressure Effects. J. Surf. Investig. 15 (Suppl 1), S168–S172 (2021). https://doi.org/10.1134/S1027451022010359

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010359

Keywords:

Navigation