Skip to main content
Log in

Influence of Pulsed Flows of Deuterium Ions and Deuterium Plasma on Cu–Ni and Cu–Ni–Ga Alloys

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Experiments on the irradiation of Cu–4 wt % Ni and Cu–4 wt % Ni–10 wt % Ga copper alloys by high-power pulsed flows of deuterium plasma and deuterium ions are carried out in the Plasma Focus PF-1000 installation. The alloys are irradiated in two modes: the hard mode of combined action of deuterium plasma flows at qpl = 108–109 W/cm2, τpl = 100 ns and deuterium ions at qi = 109–1010 W/cm2, τi = 50 ns and also in more soft conditions: the Cu–4 wt % Ni alloy is irradiated with a deuterium plasma flow at a power density of qi = 2 × 107 W/cm2 and pulse duration of τpl = 100 ns; the Cu–4 wt % Ni–10 wt % Ga alloy, at qpl = 5 ×107–108 W/cm2 and qi = 108–109 W/cm2 and the same values of the pulse duration. The nature of the damage for Cu–4 wt % Ni and Cu–4 wt % Ni–10 wt % Ga alloys in the irradiation modes implemented is approximately the same and is determined by the wavy surface relief, the presence of craters, micropores, droplet-like fragments, and the absence of microcracks. Unlike the Cu–4 wt % Ni alloy, the surface structure of the Cu–4 wt % Ni–10 wt % Ga copper alloys has, after irradiation, a cellular or cellular–dendritic character. The parameters of the formation of such a structure depend on the regime of pulsed irradiation of the sample target and the conditions of subsequent directed crystallization of the molten surface layer. The formation of this structure is also significantly affected by alloying of the binary copper–nickel alloy with a third element (gallium) and probably the dendritic structure of the alloy in the initial state of the alloys. Plastic deformation is observed in the surface layer of each of the studied alloys after exposure to the flows of deuterium plasma and deuterium ions, which proceed by the sliding mechanism along the planes of the densest packing {111}, typical of materials with a face-centered cubic (fcc) lattice. The ductile copper Cu–Ni and Cu–Ni–Ga alloys under study, as well as the Cu–10 wt % Ga alloy studied previously, exhibit very high crack resistance to the effects of high-power pulsed radiation-thermal loads generated in a Plasma Focus PF-1000 installation, as compared to the refractory metals W, Mo, and V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, V. L. and Yakushin, Advanced Radiation-Beam Technologies for Material Processing (Kruglyi God, Moscow, 2001) [in Russian].

    Google Scholar 

  2. I. E. Garkusha, A. V. Burdakov, I. A. Ivanov, E. P. Kruglyakov, K. N. Kuklin, I. S. Landman, V. A. Makhlaj, S. V. Polosatkin, A. A. Shoshin, V. I. Tereshin, and N. N. Aksenov, Probl. At. Sci. Technol., Ser.: Plasma Phys. 14 (6), 58 (2008).

    CAS  Google Scholar 

  3. V. A. Gribkov, V. N. Pimenov, L. I. Ivanov, E. V. Dyomina, S. A. Maslyaev, R. Miklaszewski, M. Scholz, U. E. Ugaste, A. V. Doubrovsky, F. Mezzetti, V. C. Kulikauskas, and V. V. Zatekin, J. Phys. D: Appl. Phys. 36, 1817 (2003).

    Article  CAS  Google Scholar 

  4. P. N. Maier and A. E. Maier, Vestn. Chelyabinsk. Gos. Univ. Ser. Fiz. 11 (35), 41 (2011).

    Google Scholar 

  5. V. S. Kovivchak, T. V. Panova, V. I. Blinov, and R. B. Burlakov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 4, 69 (2006).

  6. A. D. Pogrebnyak and Yu. N. Tyurin, Phys.—Usp. 48, 487 (2005).

    Article  Google Scholar 

  7. V. I. Tereshin, I. E. Garkusha, and V. V. Chebotarev, “Modification of surface layers of solids by powerful pulsed plasma flows. Radiation plasmodynamics,” in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2007), Vol. 9, p. 442.

    Google Scholar 

  8. Z. G. Li, J. L. He, T. Matsumoto, T. Mori, S. Miyake, Y. Muramatsu, Surf. Coat. Technol. 173–174, 1140 (2003).

    Article  Google Scholar 

  9. R. Betti and O. A. Hurricane, Nat. Phys. 12, 435 (2016). https://doi.org/10.1038/nphys3736

    Article  CAS  Google Scholar 

  10. V. Ya. Bayankin, M. I. Guseva, D. I. Tetel’baum, and F. Z. Gil’mutdinov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 5, 77 (2005).

  11. A. A. Novoselov, A. A. Shushkov, V. Ya. Bayankin, and A. V. Vakhrushev, Khim. Fiz. Mezoskopiya 14, 609 (2012).

    CAS  Google Scholar 

  12. A. A. Novoselov, V. Ya. Bayankin, D. O. Filatov, A. A. Smirnov, and D. I. Tetel’baum, Vestn. NNGU. Ser. Fiz. Tverd. Tela, No. 2, 12 (2013).

    Google Scholar 

  13. M. V. Zhidkov, A. E. Ligachev, Yu. R. Kolobov, G. V. Potemkin, and G. E. Remnev, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, No. 4, 82 (2018). https://doi.org/10.17073/1997-308X-2018-4-82-91

  14. A. V. Zhikharev, V. Ya. Bayankin, I. N. Klimova, S. G. Bystrov, A. Yu. Drozdov, and E. V. Kharanzhevskii, Phys. Solid State 57, 845 (2015).

    Article  CAS  Google Scholar 

  15. V. I. Mazhukin, A. V. Mazhukin, M. M. Demin, and A. V. Shapranov, Opt. Zh. 78 (8), 29 (2011).

    Google Scholar 

  16. I. V. Khomskaya, V. I. Zel’dovich, N. Yu. Frolova, and A. E. Kheifets, Bull. Russ. Acad. Sci.: Phys. 74, 1546 (2010).

    Article  Google Scholar 

  17. I. V. Khomskaya, Perspekt. Mater., No. 12, 551 (2011).

  18. S. V. Razorenov and G. V. Garkushin, Tech. Phys. 60, 1021 (2015).

    Article  CAS  Google Scholar 

  19. I. V. Borovitskaya, V. A. Gribkov, A. S. Demin, N. A. Epifanov, S. V. Latyshev, S. A. Maslyaev, E. V. Morozov, V. N. Pimenov, I. P. Sasinovskaya, G. G. Bondarenko, A. I. Gaidar, and M. Scholz, Perspekt. Mater., No. 5, 23 (2020). https://doi.org/10.30791/1028-978X-2020-5-23-37

  20. N. B. Volkov, A. E. Maier, and A. P. Yalovets, Tech. Phys. 47, 968 (2002).

    Article  CAS  Google Scholar 

  21. X. P. Zhu, M. K. Lei, Z. H. Dong, and S. M. Miao, Surf. Coat. Technol. 173, 105 (2003). https://doi.org/10.1016/S0257-8972(03)00321-9

    Article  CAS  Google Scholar 

  22. V. S. Kovivchak, T. V. Panova, and K. A. Mikhailov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 64 (2012).

    Article  CAS  Google Scholar 

  23. G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (BINOM. Laboratoriya Znanii, Moscow, 2016) [in Russian].

  24. V. A. Gribkov, M. Paduch, E. Zielinska, A. S. Demin, E. V. Demina, E. E. Kazilin, S. V. Latyshev, S. A. Maslyaev, E. V. Morozov, and V. N. Pimenov, Radiat. Phys. Chem. 150, 20 (2018).

    Article  CAS  Google Scholar 

  25. I. V. Borovitskaya, V. N. Pimenov, V. A. Gribkov, M. Paduch, G. G. Bondarenko, A. I. Gaidar, V. V. Paramonova, and E. V. Morozov, Russ. Metall. (Eng. Transl.) 2017, 928 (2017).

  26. A. S. Demin, S. A. Maslyaev, V. N. Pimenov, V. A. Gribkov, E. V. Demina, S. V. Latyshev, M. M. Lyakhovitskii, I. P. Sasinovskaya, G. G. Bondarenko, A. I. Gaidar, and M. Paduch, Inorg. Mater.: Appl. Res. 8, 412 (2017).

    Article  Google Scholar 

  27. Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen, 3rd ed. (North-Holland, Amsterdam, 1983; Metallurgiya, Moscow, 1987), Vol. 2.

  28. N. D. Nyashina and P. V. Trusov, Vestn. Perm. Gos. Tekh. Univ. Mat. Model. Sist. Protsess., No. 6, 66 (1998).

  29. V. A. Timofeeva, Crystal Growth from Solution–Melt (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  30. A. G. Poskakalov, N. S. Klimov, Yu. M. Gasparyan, O. V. Ogorodnikova, and V. S. Efimov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 41, 23 (2018).

    Google Scholar 

  31. A. N. Ladygin and V. Ya. Sverdlov, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 3, 132 (2004).

  32. V. M. Azhazha, V. Ya. Sverdlov, A. A. Kondratov, A. V. Boguslaev, and V. V. Klochikhin, Vestn. Khar’kov. Univ., No 781, 73 (2007).

  33. R. W. K. Honeycombe, The Plastic Deformation of Metals (Edward Arnold, London, 1968; Mir, Moscow, 1972).

Download references

Funding

This work was performed in the framework of task no. 075-00947-20-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Pimenov or I. V. Borovitskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, V.N., Borovitskaya, I.V., Gribkov, V.A. et al. Influence of Pulsed Flows of Deuterium Ions and Deuterium Plasma on Cu–Ni and Cu–Ni–Ga Alloys. J. Surf. Investig. 16, 33–41 (2022). https://doi.org/10.1134/S1027451022010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010153

Keywords:

Navigation