Skip to main content
Log in

Dynamics of the Photoinduced Resistance at the Ba0.8Sr0.2TiO3/LaMnO3 Heterostructure Interface

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of green (514 nm) and infrared (1028 nm) pulsed laser light on the electrical resistance at the interface of a Ba0.8Sr0.2TiO3/LaMnO3 heterostructure is studied. Illumination is shown to cause, at low temperatures of 80–200 K, an increase in the resistance along the interface by a value of up to 2–15% from the initial value. The characteristic time of the transient dynamics of varying the resistance is 4–12 s. The effect of the photoinduced resistance is observed either at both green and infrared illumination; in this case, the effect of green-light illumination is significantly higher. Illumination is carried out by a defocused laser beam; thus, the effect cannot be related to heating of the interface region. The effects are shown to add up during simultaneous illumination with green and infrared light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004). https://doi.org/10.1038/nature02308

    Article  CAS  Google Scholar 

  2. M. K. Niranjan, Y. Wang, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 1, 016804 (2009). https://doi.org/10.1103/PhysRevLett.103.016804

    Article  CAS  Google Scholar 

  3. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006). https://doi.org/10.1126/science.1131091

    Article  CAS  Google Scholar 

  4. N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007). https://doi.org/10.1126/science.1146006

    Article  CAS  Google Scholar 

  5. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007). https://doi.org/10.1038/nmat1931

    Article  CAS  Google Scholar 

  6. A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, and D. Winkler, Phys. Rev. B: Condens. Matter Mater. Phys. 75, 121404 (2007). https://doi.org/10.1103/PhysRevB.75.121404

    Article  CAS  Google Scholar 

  7. P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, Ch. G. van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011). https://doi.org/10.1063/1.3669402

    Article  CAS  Google Scholar 

  8. C. A. Jackson and S. Stemmer, Phys. Rev. B: Condens. Matter Mater. Phys. 88, 180403 (2013). https://doi.org/10.1103/PhysRevB.88.180403

    Article  CAS  Google Scholar 

  9. J. Biscaras and N. L. Bergea, A. Kushwaha, T. Wolf, A. Rastogi, R. C Budhani, and J. Lesueur, Nat. Commun. 1, 89 (2010). https://doi.org/10.1038/ncomms1084

    Article  CAS  Google Scholar 

  10. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006). https://doi.org/10.1038/nmat1569

    Article  CAS  Google Scholar 

  11. K. D. Fredrickson and A. A. Demkov, Phys. Rev. B: Condens. Matter Mater. Phys. 91, 115126 (2015). https://doi.org/10.1103/PhysRevB.91.115126

    Article  CAS  Google Scholar 

  12. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  13. D. P. Pavlov, R. R. Zagidullin, V. M. Mukhortov, V. V. Kabanov, T. Adachi, T. Kawamata, Y. Koike, and R. F. Mamin, Phys. Rev. Lett. 122, 237001 (2019). https://doi.org/10.1103/PhysRevLett.122.237001

    Article  CAS  Google Scholar 

  14. D. P. Pavlov, I. I. Piyanzina, V. M. Muhortov, A. I. Balbashov, D. A. Tauyrskii, I. A. Garifullin, and R. F. Mamin, JETP Lett. 106, 460 (2017). https://doi.org/10.7868/S0370274X17190080

    Article  CAS  Google Scholar 

  15. V. V. Kabanov, I. I. Piyanzina, Yu. V. Lysogorskiy, D. A. Tayurskii, and R. F. Mamin, Mater. Res. Express 7, 055020 (2020). https://doi.org/10.1088/2053-1591/ab940e

    Article  CAS  Google Scholar 

  16. V. M. Mukhortov, Y. I. Golovko, G. N. Tolmachev, and A. N. Klevtzov, Ferroelectrics 247, 75 (2000). https://doi.org/10.1080/00150190008214943

    Article  CAS  Google Scholar 

  17. Yu. I. Golovko, V. M. Mukhortov, Yu. I. Yuzyuk, P. E. Janolin, and B. Dkhil, Phys. Solid State 50, 485 (2008). https://doi.org/10.1134/S1063783408030153

    Article  CAS  Google Scholar 

  18. Y. Gagou, J. Belhadi, B. Asbani, M. El Marssi, J.‑L. Dellis, Yu. I. Yuzyuk, I. P. Raevski, and J. F. Scott, Mater. Des. 122, 157 (2017). https://doi.org/10.1016/j.matdes.2017.03.001

    Article  CAS  Google Scholar 

  19. R. F. Mamin, D. K. Zharkov, D. P. Pavlov, and V. V. Kabanov, Ferroelectrics 541, 93 (2019). https://doi.org/10.1080/00150193.2019.1574648

    Article  CAS  Google Scholar 

  20. I. P. Raevskii, A. N. Pavlov, O. I. Prokopalo, and E. I. Bondarenko, Ferroelectrics 83, 171 (1988). https://doi.org/10.1080/00150198808235468

    Article  Google Scholar 

  21. H. Yang, B. Chen, J. Miao, L. Zhao, B. Xu, X. Dong, L. Cao, X. Qiu, and B. Zhao, Appl. Phys. Lett. 85, 5019 (2004). https://doi.org/10.1063/1.1827928

    Article  CAS  Google Scholar 

  22. J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975). https://doi.org/10.1063/1.321760

    Article  Google Scholar 

  23. T. N. Thomas, C. J. Stevens, A. J. S. Choudary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, and J. E. Evetts, Phys. Rev. B: Condens. Matter Mater. Phys. 53, 12436 (1996). https://doi.org/10.1103/PhysRevB.53.12436

    Article  CAS  Google Scholar 

  24. H. S. Carslaw and J. S. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1985).

    Google Scholar 

  25. D. Mihailovic and J. Demsar, “Time-resolved optical studies of quasiparticle dynamics in high-temperature superconductors experiments and theory,” Chapter 16 in Spectroscopy of Superconducting Materials, ACS Symposium Series 730, 230 (1999). https://doi.org/10.1021/bk-1999-0730.ch016

  26. S. J. Hagen, Z. Z. Wang, and N. P. Ong, Phys. Rev. B: Condens. Matter Mater. Phys. 40, 9389 (1989). https://doi.org/10.1103/PhysRevB.40.9389

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.A. Shulyaev for placing at our disposal the LaMnO3 single crystals, which were used as substrates for depositing the films and V.M. Mukhortov for the deposition of ferroelectric Ba0.8Sr0.2TiO3 films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mamin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontyev, A.V., Zagidullin, R.R., Zharkov, D.K. et al. Dynamics of the Photoinduced Resistance at the Ba0.8Sr0.2TiO3/LaMnO3 Heterostructure Interface. J. Surf. Investig. 15 (Suppl 1), S141–S144 (2021). https://doi.org/10.1134/S1027451022010104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010104

Keywords:

Navigation