Skip to main content
Log in

Local Atomic Structure and Magnetic Properties of Cu(II), Co(II), and Zn(II) 1-(2-Hydroxybenzylidenamino)benzimidazolinone-2 Complexes

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

New azomethine 1-(2-hydroxybenzylidenamino)benzimidazolinone-2 and Cu(II), Co(II) and Zn(II) complexes based on it are synthesized and studied. The structure of azomethine and metal complexes is found from the data of elemental analysis, infrared (IR) spectroscopy, 1H NMR spectroscopy, X-ray absorption spectroscopy, and magnetochemistry. It is shown that all complexes have a mononuclear structure with the general formula M(HL)2. For the copper complex, the weak antiferromagnetic-type exchange between copper ions is observed due to the formation of intermolecular hydrogen bonds N–H···O=C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. B. Wright, Chem. Rev. 48, 397 (1951). https://doi.org/10.1021/cr6015a002

    Article  CAS  Google Scholar 

  2. Comprehensive Coordination Chemistry II, Ed. by J. A. McCleverty and T. J. Meyer (Elsevier, Amsterdam, 2004), Vol. 1, p. 125.

    Google Scholar 

  3. Comprehensive Heterocyclic Chemistry III, Ed. by A. R. Katritsky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (Elsevier, Amsterdam, 2008), Vol. 4, p. 143.

    Google Scholar 

  4. Ş. G. Küçükgüzel and P. Çikla-Süzgün, Eur. J. Med. Chem. 97, 830 (2015). https://doi.org/10.1016/j.ejmech.2014.11.033

    Article  CAS  Google Scholar 

  5. K. Singh, M. S. Barwa, and P. Tyagi, Eur. J. Med. Chem. 41, 147 (2006). https://doi.org/10.1016/j.ejmech.2005.06.006

    Article  CAS  Google Scholar 

  6. G. B. Bagihalli, P. G. Avaji, S. A. Patil, and P. S. Badami, Eur. J. Med. Chem. 43, 2639 (2008). https://doi.org/10.1016/j.ejmech.2008.02.013

    Article  CAS  Google Scholar 

  7. J.-W. Yu, Y. Wang, Y.-B. Wang, and C.-F. Wang, J. Chem. Res. 37, 164 (2013). https://doi.org/10.3184/174751913X13605940678869

    Article  CAS  Google Scholar 

  8. K. C. Ko, J.-S. Wu, H. J. Kim, P. S. Kwon, R. A. Bartsch, J. Y. Lee, and J. S. Kim, Chem. Commun. 47, 3165 (2011). https://doi.org/10.1039/C0CC05421F

    Article  CAS  Google Scholar 

  9. M. Shaharyar and A. Mazumder, Arab. J. Chem. 10, 157 (2017). https://doi.org/10.1016/j.arabjc.2012.07.017

    Article  CAS  Google Scholar 

  10. M. Sankarganesh, J. Dhaveethu Raja, K. Sakthikumar, R. Vijay Soloman, J. Rajesh, S. Athimoolam, and V. Vijayakumar, Bioorg. Chem. 81, 144 (2018). https://doi.org/10.1016/j.bioorg.2018.08.006

    Article  CAS  Google Scholar 

  11. B. K. Karale, S. S. Rindhe, and M. A. Rode, Indian J. Pharm. Sci. 77, 230 (2015). https://doi.org/10.4103/0250-474X.156619

    Article  CAS  Google Scholar 

  12. C. Yu, Q. Fu, and J. Zhang, Sensors 14, 12560 (2014). https://doi.org/https://10.3390/s140712560

    Article  CAS  Google Scholar 

  13. T. S. Reddy, H. Kulhari, V. G. Reddy, V. Bansal, A. Kamal, and R. Shukla, Eur. J. Med. Chem. 101, 790 (2015). https://doi.org/10.1016/j.ejmech.2015.07.031

    Article  CAS  Google Scholar 

  14. X. Qiao, Z.-Y. Ma, J. Shao, W.-G. Bao, J.-Y. Xu, Z.-Y. Qiang, and J.-S. Lou, Biometals 27, 155 (2014). https://doi.org/10.1007/s10534-013-9696-1

    Article  CAS  Google Scholar 

  15. A.-M. Monforte, A. Rao, P. Logoteta, S. Ferro, L. D. Luca, M. L. Barreca, N. Iraci, G. Maga, E. D. Clercq, C. Pannecouque, and A. Chimirri, Bioorg. Med. Chem. 16, 7429 (2008). https://doi.org/10.1016/j.bmc.2008.06.012

    Article  CAS  Google Scholar 

  16. C. R. Theberge, R. A. Bednar, I. M. Bell, H. A. Corcoran, J. F. Fay, J. C. Hershey, V. K. Johnston, S. A. Kane, S. Mosser, C. A. Salvatore, T. M. Williams, C. B. Zartman, X. F. Zhang, S. L. Graham, and J. P. Vacca, Bioorg. Med. Chem. Lett. 18, 6122 (2008). https://doi.org/10.1016/j.bmcl.2008.10.019

    Article  CAS  Google Scholar 

  17. W. Wang, H. P. Cao, S. Wolf, M. S. Camacho-Horvitz, T. A. Holak, and A. Domling, Bioorg. Med. Chem. 21, 3982 (2013). https://doi.org/10.1016/j.bmc.2012.06.020

    Article  CAS  Google Scholar 

  18. H. Omura, M. Kawai, A. Shima, Y. Iwata, F. Ito, T. Masuda, A. Ohta, N. Makita, K. Omoto, H. Sugimoto, A. Kikuchi, H. Iwata, and K. Ando, Bioorg. Med. Chem. Lett. 18, 3310 (2008). https://doi.org/10.1016/j.bmcl.2008.04.032

    Article  CAS  Google Scholar 

  19. J. F. Berry, D. V. Ferraris, B. Duvall, N. Hin, R. Rais, J. Alt, A. G. Thomas, C. Rojas, K. Hashimoto, B. S. Slusher, and T. Tsukamoto, ACS Med. Chem. Lett. 3, 839 (2012). https://doi.org/10.1021/ml300212a

    Article  CAS  Google Scholar 

  20. R. Zhang, Q. Wang, Q. Li, and C. Ma, Inorg. Chim. Acta 362, 2762 (2009). https://doi.org/1016/j.jca.2008.12.017

    Article  CAS  Google Scholar 

  21. H.-X. Yu, J.-F. Ma, H.-G. Xu, S.-L. Li, J. Yang, Y.-Y. Liu, and Y.-X. Cheng, J. Organomet. Chem. 691, 3531 (2006). https://doi.org/10.1016/j.jorganchem.2006.05.002

    Article  CAS  Google Scholar 

  22. V. A. Mamedov, N. A. Zhukova, and O. G. Sinyashin, Mendeleev Commun. 27, 1 (2017). https://doi.org/10.1016/j.mencom.2017.01.001

    Article  CAS  Google Scholar 

  23. I. S. Vasil’chenko, T. A. Kuz’menko, T. E. Shestakova, R. N. Borisenko, L. N. Divaeva, A. S. Burlov, N. I. Borisenko, I. E. Uflyand, and A. D. Garnovskii, Russ. J. Coord. Chem. 31, 747 (2005).

    Article  Google Scholar 

  24. I. S. Vasilchenko, K. A. Lyssenko, T. A. Kuz’menko, A. I. Uraev, D. A. Garnovskii, L. N. Divaeva, and A. S. Burlov, Mendeleev Commun. 25, 397 (2015). https://doi.org/10.1016/j.mencom.2015.09.030

    Article  CAS  Google Scholar 

  25. M. J. Kornet, W. Beaven, and T. Varia, J. Heterocycl. Chem. 22, 1089 (1985). https://doi.org/10.1002/jhet.5570220433

    Article  CAS  Google Scholar 

  26. A. F. Pozharskii, I. M. Nanavyan, V. V. Kuz’menko, A. I. Chernyshev, Yu. V. Orlov, and N. A. Klyuev, Chem. Heterocycl. Compd. 25, 1241 (1989).

    Article  Google Scholar 

  27. M. Newville, J. Synchrotron Radiat. 8, 96 (2001). https://doi.org/10.1107/S0909049500016290

    Article  CAS  Google Scholar 

  28. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B: Condens. Matter Mater. Phys. 52, 2995 (1995). https://doi.org/10.1103/PhysRevB.52.2995

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  30. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02. 2009.

  33. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  CAS  Google Scholar 

  34. V. I. Minkin, L. P. Olekhnovich, and Yu. A. Zhdanov, Molecular Design of Tautomeric Systems (Rostov. Gos. Univ., Rostov-on-Don, 1977) [in Russian].

    Google Scholar 

  35. V. I. Minkin, Pure Appl. Chem. 61, 661 (1989). http://dx.doi.org//10.1351/pac198961040661

    Article  CAS  Google Scholar 

  36. V. I. Minkin, A. D. Garnovskii, J. Elguero, A. R. Katritzky, and O. V. Denisko, Adv. Heterocycl. Chem. 76, 157 (2000). https://doi.org/10.1016/S0065-2725(00)76005-3

    Article  CAS  Google Scholar 

  37. A. D. Garnovskii, A. L. Nivorozhkin, and V. I. Minkin, Coord. Chem. Rev. 126, 1 (1993). https://doi.org/10.1016/0010-8545(93)85032-Y

    Article  CAS  Google Scholar 

  38. A. D. Garnovskii and I. S. Vasil’chenko, Russ. Chem. Rev. 74, 193 (2005).

    Article  CAS  Google Scholar 

  39. V. G. Vlasenko, A. S. Burlov, T. A. Kuz’menko, A. T. Kozakov, A. V. Nikol’skii, A. L. Trigub, and S. I. Levchenkov, Russ. J. Gen. Chem. 88, 2550 (2018).

    Article  CAS  Google Scholar 

  40. M. Rubčić, K. Užarević, I. Halasz, N. Bregović, M. Mališ, Z. Đilović, Z. Kokan, R. S. Stein, R. E. Dinnebier, and V. Tomisic, Chem.-Eur. J. 18, 5620 (2012). https://doi.org/10.1002/chem.201103508

    Article  CAS  Google Scholar 

  41. M. Juribašić, N. Bregović, V. Stilinović, V. Tomišić, M. Cindrić, P. Šket, J. Plavec, M. Rubčić, and K. Užarević, Chem.-Eur. J. 20, 17333 (2014). https://doi.org/10.1002/chem.201403543

    Article  CAS  Google Scholar 

  42. O. Domínguez, B. Rodríguez-Molina, M. Rodríguez, A. Ariza, N. Farfán, and R. Santillan, New J. Chem. 35, 156 (2011). https://doi.org/10.1039/C0NJ00179A

    Article  Google Scholar 

  43. P. M. Dominiak, E. Grech, G. Barr, et al., Chem.-Eur. J. 9, 963 (2003). https://doi.org/10.1002/chem.200390118

    Article  CAS  Google Scholar 

  44. O. Kahn, Molecular Magnetism (VCH, New York, 1993).

    Google Scholar 

  45. B. Bleaney and K. D. Bowers, Proc. R. Soc. London, Ser. A 214 (1119), 451 (1952). https://doi.org/10.1098/rspa.1952.0181

    Article  CAS  Google Scholar 

  46. S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, V. V. Lukov, V. V. Minin, Z. A. Starikova, E. V. Ivannikova, A. A. Tsaturyan, and V. A. Kogan, Inorg. Chim. Acta 405, 169 (2013). https://doi.org/10.1016/j.ica.2013.05.032

    Article  CAS  Google Scholar 

  47. S. I. Levchenkov, L. D. Popov, N. N. Efimov, V. V. Minin, E. A. Ugolkova, G. G. Aleksandrov, Z. A. Starikova, I. N. Shcherbakov, A. M. Ionov, and V. A. Kogan, Russ. J. Inorg. Chem. 60, 1129 (2015).

    Article  CAS  Google Scholar 

  48. T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, and E. I. Solomon, J. Am. Chem. Soc. 119, 6297 (1997). https://doi.org/10.1021/ja964352a

    Article  CAS  Google Scholar 

  49. D. F. Leto and T. A. Jackson, Inorg. Chem. 53, 6179 (2014). https://doi.org/10.1021/ic5006902

    Article  CAS  Google Scholar 

  50. P. Chandrasekaran, S. C. E. Stieber, T. J. Collins, L. Que, Jr., F. Neese, and S. DeBeer, Dalton Trans. 40, 11070 (2011). https://doi.org/10.1039/C1DT11331C

    Article  CAS  Google Scholar 

  51. M. Uchikoshi and K. Shinoda, Struct. Chem. 30, 945 (2019). https://doi.org/10.1007/s11224-018-1245-7

    Article  CAS  Google Scholar 

  52. S. Adak, M. Hartl, L. Daemen, E. Fohtung, and H. Nakotte, J. Electron Spectrosc. Relat. Phenom. 214, 8 (2017). https://doi.org/10.1016/j.elspec.2016.11.011

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (State task in the field of scientific activities of the Southern Federal University, project no. 0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Vlasenko or A. S. Burlov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilchenko, I.S., Vlasenko, V.G., Kuzmenko, T.A. et al. Local Atomic Structure and Magnetic Properties of Cu(II), Co(II), and Zn(II) 1-(2-Hydroxybenzylidenamino)benzimidazolinone-2 Complexes. J. Surf. Investig. 15, 1004–1011 (2021). https://doi.org/10.1134/S1027451021050414

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021050414

Keywords:

Navigation