Skip to main content
Log in

Search for Analytical Relations between X-Ray Absorption Spectra Descriptors and the Local Atomic Structure Using Machine Learning

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this paper, we develop a new technique for quantitative analysis of the near region of X-ray absorption spectra that is based on the extraction of spectrum descriptors and machine learning. The use of descriptors (edge position, intensity and curvature of minima and maxima, and tangent of the slope of the absorption edge) allows solution of the problem of systematic differences between theoretical calculations and experimental data, reducing the dimension of the problem and thereby improving the accuracy of machine-learning algorithms. We obtain analytical relations between the spectrum descriptors and the parameters of the local atomic structure of a substance, which extend the range of applicability of the empirical Natoli rule and analysis of the chemical shift of spectra to arbitrary classes of chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev, A. V. Soldatov, C. Lamberti, V. P. Dmitriev, and J. A. Van Bokhoven, J. Phys. Chem. C 118, 10416 (2014). https://doi.org/10.1021/jp500734p

    Article  CAS  Google Scholar 

  2. J. A. Van Bokhoven and C. Lamberti, X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, New York, 2016).

    Book  Google Scholar 

  3. C. R. Natoli, in EXAFS and Near Edge Structure III, Ed. by K. O. Hodgson, B. Hedman, and J. E. Penner-Hahn (Springer, Berlin, 1984), Vol. 2, p. 38.

    Google Scholar 

  4. J. García, G. Subías, and J. Blasco, in X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications, Ed. by J. A. van Bokhoven and C. Lamberti (Wiley, Chichester, 2016), p. 459.

    Google Scholar 

  5. C. Zheng, C. Chen, Y. Chen, and S. P. Ong, Patterns 1, 100013 (2020). https://doi.org/10.1016/j.patter.2020.100013

    Article  Google Scholar 

  6. Y. Liu, N. Marcella, J. Timoshenko, A. Halder, B. Yang, L. Kolipaka, M. J. Pellin, S. Seifert, S. Vajda, P. Liu, and A. I. Frenkel, J. Chem. Phys. 151, 164201 (2019). https://doi.org/10.1063/1.5126597

    Article  CAS  Google Scholar 

  7. J. Timoshenko, D. Y. Lu, Y. W. Lin, and A. I. Frenkel, J. Phys. Chem. Lett. 8, 5091 (2017). https://doi.org/10.1021/acs.jpclett.7b02364

    Article  CAS  Google Scholar 

  8. C. D. Rankine, M. M. M. Madkhali, and T. J. Penfold, J. Phys. Chem. A 124, 4263 (2020). https://doi.org/10.1021/acs.jpca.0c03723

    Article  CAS  Google Scholar 

  9. A. Martini, S. A. Guda, A. A. Guda, G. Smolentsev, A. Algasov, O. Usoltsev, M. A. Soldatov, A. Bugaev, Y. Rusalev, C. Lamberti, and A. V. Soldatov, Comput. Phys. Commun. 250, 107064 (2019). https://doi.org/10.1016/j.cpc.2019.107064

    Article  CAS  Google Scholar 

  10. J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, NPJ Comput. Mater. 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  11. O. Trejo, A. L. Dadlani, F. De La Paz, S. Acharya, R. Kravec, D. Nordlund, R. Sarangi, F. B. Prinz, J. Torgersen, and N. P. Dasgupta, Chem. Mater. 31, 8937 (2019). https://doi.org/10.1021/acs.chemmater.9b03025

    Article  CAS  Google Scholar 

  12. M. Wilke, F. Farges, P. E. Petit, G. E. Brown, and F. Martin, Am. Mineral. 86, 714 (2001). https://doi.org/10.2138/am-2001-5-612

    Article  CAS  Google Scholar 

  13. M. R. Carbone, S. Yoo, M. Topsakal, and D. Y. Lu, Phys. Rev. Mater. 3, 033604 (2019). https://doi.org/10.1103/PhysRevMaterials.3.033604

    Article  CAS  Google Scholar 

  14. M. R. Carbone, M. Topsakal, D. Y. Lu, and S. Yoo, Phys. Rev. Lett. 124, 156401 (2020). https://doi.org/10.1103/PhysRevLett.124.156401

    Article  CAS  Google Scholar 

  15. S. B. Torrisi, M. R. Carbone, B. A. Rohr, J. H. Montoya, Y. Ha, J. Yano, S. K. Suram, and L. Hung, NPJ Comput. Mater. 6, 109 (2020). https://doi.org/10.1038/s41524-020-00376-6

    Article  Google Scholar 

  16. Y. Joly, Phys. Rev. 63, 125120. https://doi.org/10.1103/PhysRevB.63.125120

  17. S. A. Guda, A. A. Guda, M. A. Soldatov, K. A. Lomachenko, A. L. Bugaev, C. Lamberti, W. Gawelda, C. Bressler, G. Smolentsev, A. V. Soldatov, and Y. Joly, J. Chem. Theory Comput. 11, 4512 (2015). https://doi.org/10.1021/acs.jctc.5b00327

    Article  CAS  Google Scholar 

  18. A. L. Bugaev, V. V. Srabionyan, A. V. Soldatov, L. A. Bugaev, and J. A. van Bokhoven, J. Phys.: Conf. Ser. 430, 012028 (2013). https://doi.org/10.1088/1742-6596/430/1/012028

    Article  CAS  Google Scholar 

  19. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, A. Lazzarini, V. V. Srabionyan, J. G. Vitillo, A. Piovano, E. Groppo, L. A. Bugaev, A. V. Soldatov, V. P. Dmitriev, R. Pellegrini, J. A. van Bokhoven, and C. Lamberti, J. Phys.: Conf. Ser. 712, 012032 (2016). https://doi.org/10.1088/1742-6596/712/1/012032

    Article  CAS  Google Scholar 

  20. L. J. Zhang, J. Zhou, J. Y. Zhang, J. Su, S. Zhang, N. Chen, Y. P. Jia, J. Li, Y. Wang, and J. Q. Wang, J. Synchrotron Radiat. 23, 758 (2016). https://doi.org/10.1107/S1600577516001910

    Article  CAS  Google Scholar 

  21. D. H. Bailey, Comput. Sci. Eng. 2, 24 (2000). https://doi.org/10.1109/5992.814653

    Article  Google Scholar 

  22. D. H. Bailey, J. Borwein, N. Calkin, R. Luke, R. Girgensohn, and V. Moll, Experimental Mathematics in Action (CRC, Boca Raton, 2007).

    Book  Google Scholar 

  23. H. Zou and T. Hastie, J. R. Stat. Soc. B 67, 301 (2005). https://doi.org/10.1111/J.1467-9868.2005.00503.X

    Article  Google Scholar 

  24. R. Tibshirani, J. R. Stat. Soc. B 58, 267 (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation for Young Russian Scientists, grant no. MK-2730.2019.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Guda.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guda, S.A., Algasov, A.S., Guda, A.A. et al. Search for Analytical Relations between X-Ray Absorption Spectra Descriptors and the Local Atomic Structure Using Machine Learning. J. Surf. Investig. 15, 934–938 (2021). https://doi.org/10.1134/S1027451021050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021050050

Keywords:

Navigation