Skip to main content
Log in

Formation of Knots of Carbon Nanotubes in Isotactic Polypropylene Matrix due to the Results of Small-Angle Neutron Scattering and Lattice Numerical Simulation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Data on the morphology of carbon allotrope nanoparticles in an isotactic polypropylene (IPP) matrix are analyzed. They are obtained using the small-angle neutron scattering method and a YuMO spectrometer at the IBR2 reactor of the Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Physics (Dubna, Russian Federation). The fractal dimensionality is calculated, the form is reconstructed, and the geometric dimensions of the obtained particles and aggregates of single-wall carbon nanotubes (SWCNTs) in the IPP volume taken in concentrations of 1.2, 2.6, and 8 wt % are determined using ATSAS software. It is established that nanotubes form fractal nanoobjects with a rough surface in the IPP volume. Composite IPP/SWCNT systems are polydisperse to a significant degree; nanotubes twist into coils and knots and become more densely packed; in the polymer volume, the dimensions of the formed nanoparticles and their aggregates are several times larger than the initial ones used during synthesis. A model of knot formation in polymer materials based on calculating the asymptotic Hopf invariant and the lattice fractal dimensionality is used in this paper to interpret the results and predictions of the possible morphology forming in samples of such a type. The energies and probabilities of knot formation are estimated qualitatively using the Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. N. D’yachkov, Electronic Properties and Applications of Nanotubes (BINOM, Moscow, 2015) [in Russian].

    Google Scholar 

  2. S. V. Polschikov, P. M. Nedorezova, O. M. Palaznik, A. N. Klyamkina, D. P. Shashkin, A. Ya. Gorenberg, V. G. Krasheninnikov, V. G. Shevchenko, and A. A. Arbuzov, Polym. Eng. Sci. 58, 1461 (2018). https://doi.org/10.1002/pen.24644

    Article  CAS  Google Scholar 

  3. O. M. Palaznik, P. M. Nedorezova, S. V. Pol’shchikov, A. N. Klyamkina, V. G. Shevchenko, V. G. Krasheninnikov, T. V. Monakhova, and A. A. Arbuzov, Polym. Sci., Ser. B 61, 200 (2019). https://doi.org/10.1134/S1560090419020088

    Article  CAS  Google Scholar 

  4. P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, New York, 1953).

    Google Scholar 

  5. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  6. I. Teraoka, Polymer Solutions: An Introduction to Physical Properties (Wiley, New York, 2002).

    Book  Google Scholar 

  7. M. D. Frank-Kamenetskii and A. V. Vologodskii A.V., Sov. Phys. Usp. 24, 679 (1981).

    Article  Google Scholar 

  8. A. M. Astakhov, S. K. Nechaev, and K. E. Polovnikov, Polymer Science, Ser. C 60, 25 (2018).

    Article  CAS  Google Scholar 

  9. N. R. Beaton, J. W. Eng, K. Ishihara, K. Shimokawa, and C. E. Soteros, Soft Matter 28, 5775 (2018). https://doi.org/10.1039/C8SM00734A

    Article  Google Scholar 

  10. L. V. Elnikova, A. N. Ozerin, V. G. Shevchenko, P. M. Nedorezova, A. T. Ponomarenko, V. V. Skoi, and A. I. Kuklin, Spatial structure and aggregation of carbon allotrope nanofillers in isotactic polypropylene composites studied by small-angle neutron scattering. http://arxiv.org/ftp/arxiv/papers/2006/2006.07595.pdf

  11. A. I. Kuklin, A. D. Rogov, Yu. E. Gorshkova, P. K. Utrobin, Yu. S. Kovalev, A. V. Rogachev, O. I. Ivankov, S. A. Kutuzov, D. V. Soloviov, and V. I. Gordeliy, Phys. Part. Nucl. Lett. 8, 119 (2011). https://doi.org/10.1134/S1547477111020075

    Article  CAS  Google Scholar 

  12. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, D. V. Soloviov, A. V. Rogachev, and A. I. Kuklin, J. Phys.: Conf. Ser. 848, 012020 (2017). https://doi.org/10.1088/1742-6596/848/1/012020

    Article  CAS  Google Scholar 

  13. D. I. Svergun and L. A. Feigin, X-Ray and Neutron Small-Angle Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  14. M. V. Petoukhov, D. Franke, A. V. Shkumatov, G. Tria, A. G. Kikhney, M. Gajda, C. Gorba, H. D. T. Mertens, P. V. Konarev, and D. I. Svergun, J. Appl. Crystallogr. 45, 342 (2012). https://doi.org/10.1107/S0021889812007662

    Article  CAS  Google Scholar 

  15. S. V. Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, and V. E. Muradyan, J. Appl. Polym. Sci. 127, 904 (2013). https://doi.org/10.1002/app.37837

    Article  CAS  Google Scholar 

  16. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  17. A. N. Ozerin, T. S. Kurkin, L. A. Ozerina, and V. Yu. Dolmatov, Crystallogr. Rep. 53, 60 (2008). https://doi.org/10.1134/S1063774508010070

    Article  CAS  Google Scholar 

  18. E. V. Shtykova, Nanotechnol. Russ. 10, 408 (2015). https://doi.org/10.1134/S1995078015030155

    Article  Google Scholar 

  19. M. I. Monastyrskii and P. N. Sasorov, Nanostrukt. Mat. Fiz. Model. 11 (2), 63 (2014).

    Google Scholar 

  20. M. Monastyrsky and S. Nechaev, in Knots’1996: Proceedings of the Fifth International Research Institute of Mathematical Society of Japan, Tokyo, 1996, Ed. by S. Suzuki (World Sci., Singapore, 1997), p. 147.

  21. M. I. Polikarpov, Phys.—Usp. 38, 591 (1995).

    Article  Google Scholar 

  22. M. N. Chernodub, S. Hu, and A. J. Niemi, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 82, 011916 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Elnikova, V. G. Shevchenko or A. I. Kuklin.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnikova, L.V., Ozerin, A.N., Shevchenko, V.G. et al. Formation of Knots of Carbon Nanotubes in Isotactic Polypropylene Matrix due to the Results of Small-Angle Neutron Scattering and Lattice Numerical Simulation. J. Surf. Investig. 15, 885–889 (2021). https://doi.org/10.1134/S1027451021050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021050049

Keywords:

Navigation