Skip to main content

Study of Microscopic Residual Stresses in an Extruded Aluminium Alloy Sample after Thermal Treatment

Abstract

A method is proposed to calculate the microscopic residual stresses in extruded cylindrical samples of non-ageing aluminium alloy 5083 (Al–Mg), arising from quenching in fresh water from 530°C. We start from the premise that the alloy is single-phase and non-isotropic on a microscopic scale; it consists of many grains that exhibit different mechanical response depending on their crystallographic orientation and neighboring grains. Microscopic residual stresses depend on the applied heat treatment, microstructure and mechanical strength of the individual grains. The stresses were calculated from neutron diffraction data. Genetic programming algorithms were used to calculate microscopic residual stresses, considering that each diffraction peak describes the stress distribution of a group of grains having a certain orientation, size and environment. The algorithm assigns a stress value to each grain according to the distribution of the diffraction peaks and the microstructural parameters of these grains.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. Fernández-Castrillo, Bruno J., and G. González-Doncel, Compos. Sci. Technol. 66, 1738 (2006). https://doi.org/10.1016/j.compscitech.2005.11.006

    CAS  Article  Google Scholar 

  2. F. Cioffi, J. I. Hidalgo, R. Fernández, et al., Acta Mater. 74, 189 (2014). https://doi.org/10.1016/j.actamat.2014.04.035

    CAS  Article  Google Scholar 

  3. P. Chowdhury, H. Sehitoglu, and R. Rateick, Curr. Opin. Solid State Mater. Sci. 20, 140 (2016). https://doi.org/10.1016/j.cossms.2016.02.003

    CAS  Article  Google Scholar 

  4. B. Winiarski and P. J. Withers, Exp. Mech. 52, 417 (2012). https://doi.org/10.1007/s11340-011-9502-3

    CAS  Article  Google Scholar 

  5. J. Jiang, T. B. Britton, and A. J. Wilkinson, Acta Mater. 61, 5895 (2013). https://doi.org/10.1016/j.actamat.2013.06.038

    CAS  Article  Google Scholar 

  6. E. Salvati and A. M. Korsunsky, Int. J. Plast. 98, 123 (2017). https://doi.org/10.1016/j.ijplas.2017.07.004

    CAS  Article  Google Scholar 

  7. J. Everaerts, X. Song, B. Nagarajan, and A. M. Korsunsky, Surf. Coat. Technol. 349, 719 (2018). https://doi.org/10.1016/j.surfcoat.2018.06.043

    CAS  Article  Google Scholar 

  8. O. Muransky, L. Balogh, M. Tra, et al., Acta Mater. 175, 297 (2019). https://doi.org/10.1016/j.actamat.2019.05.036

    CAS  Article  Google Scholar 

  9. T. B. Britton and A. J. Wilkinson, Ultramicroscopy, 111, 1395 (2011). https://doi.org/10.1016/j.ultramic.2011.05.007

    CAS  Article  Google Scholar 

  10. B. Banzhaf, P. Nordin, R. E. Keller, and F. S. Francone, Genetic Programming (Springer, New York, 1998).

    Book  Google Scholar 

  11. J. I. Hidalgo, R. Fernández, J. M. Colmenar, et al., Appl. Soft Comput. 40, 429 (2016). https://doi.org/10.1016/j.asoc.2015.11.004

    Article  Google Scholar 

  12. R. Fernández, S. Ferreira-Barragáns, J. Ibáñez, and G. González-Doncel, Mater. Des. 137, 117 (2018). https://doi.org/10.1016/j.matdes.2017.10.013

    CAS  Article  Google Scholar 

  13. L. Millán, G. Bokuchava, R. Fernández, et al., J. Alloys Compd. 861, 158506 (2020). https://doi.org/10.1016/j.jallcom.2020.158506

    CAS  Article  Google Scholar 

  14. S. Wagner, G. Kronberger, A. Beham, et al., Adv. Methods Appl. Comput. Intell. 6, 197 (2014). https://doi.org/10.1007/978-3-319-01436-4_10

    Article  Google Scholar 

  15. G. Bokuchava, Crystals 8, 318 (2018). https://doi.org/10.3390/cryst8080318

    CAS  Article  Google Scholar 

  16. G. Bokuchava, Y. Gorskova, R. Fernández, et al. Rom. Rep. Phys. 71, 502 (2019). http://www.rrp.infim.ro/IP/2018/AN71502.pdf

    Google Scholar 

Download references

Funding

This work was supported by the Madrid Regional Government-FEDER grant Y2018/NMT-4668 (Micro-Stress-MAP-CM) and the project MAT2017-83825-C4-1-R. We would also like to express our gratitude to FLNR-JINP for the beam time allocated on the FSD instrument, and to the HeuristicLab Software developers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Millán.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Millán, L., Bokuchava, G., Hidalgo, J.I. et al. Study of Microscopic Residual Stresses in an Extruded Aluminium Alloy Sample after Thermal Treatment. J. Surf. Investig. 15, 763–767 (2021). https://doi.org/10.1134/S1027451021040145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040145

Keywords:

  • microscopic residual stresses
  • lattice spacing
  • electron backscatter diffraction
  • grain orientation
  • genetic programming