Abstract
Thin films of FexTi1–xO2 (x = 0.00, 0.02 and 0.04) and pure titanium dioxide (TiO2) were prepared by spin coating. The coater was set up in the laboratory at a low cost investment. The films were calcined at 450°C for 1 h. For characterization, UV-visible microscopy, scanning electron microscopy, atomic force microscopy and X-ray diffraction were used. UV-visible analysis showed a change in optical absorption and band gap due to Fe doping. Scanning electron microscopy and atomic force microscopy analyses were carried out to determine surface morphology, surface roughness and grain size. The morphological properties also severely changed due to the change in the percentage of Fe in thin TiO2 films. Crystal structure was studied by X-ray diffraction analysis. Doping with Fe increased the optical absorption and decreased the band gap. The grain size decreased with increasing Fe concentration, but the crystallinity of the films decreased. Doping with Fe also increased the surface roughness, which was very good for many applications. The lattice parameters also changed because of the Fe impurity. All results were satisfactory, although the films were prepared by self-developed spin coating system. Some optoelectrophysical and morphological properties were measured, and structural analysis was performed. Fabricating films using simple homemade spin coater can reduce the production cost.
This is a preview of subscription content, access via your institution.








REFERENCES
K. H. Ko, Y. C. Lee, and Y. J. Jung, J. Colloid Interface Sci. 283, 482 (2005). https://doi.org/10.1016/j.jcis.2004.09.009
L. S. Yoong, F. K. Chong, and B. K. Dutta, Energy 34, 1652 (2009). https://doi.org/10.1016/j.energy.2009.07.024
B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E.-K. Suh, Mater. Charact. 58, 680 (2007). https://doi.org/10.2320/matertrans.M2015366
A. Hosseini, K. Ç. Içli, M. Özenbaş, and Ç. Erçelebi, Energy Procedia 60, 191 (2014). https://doi.org/10.1016/j.egypro.2014.12.332
Y. Huang, G. Pandraud, and P. M. Sarro, J. Vac. Sci. Technol., A 31, 01A148 (2013). https://doi.org/10.1116/1.4947586
M. Ouzzine, J. A. Maciá-Agulló, M. A. Lillo-Rodenas, C. Quijada, and A. Linares-Solano, Appl. Catal., B 154, 285 (2014).
A. Fujishima and K. Honda, Nature 238, 37 (1972).
G. Liu, J. C. Yu, G. Q. M. Lu, and H. M. Cheng, Chem. Commun. 47, 6763 (2011).
Q. Ahsanullahaq, J. H. Kim, and Y. B. Hahn, Nanoscale Res. Lett. 5, 669 (2010).
B. Kiliç, N. Gedic, S. P. Mucur, A. S. Hergul, and E. Gür, Mater. Sci. Semicond. Process. 31, 363 (2015).
K. T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. 108, 79 (1997).
J. A. Navio, G. Colon, M. Macias, C. Real, and M. I. Litter, Appl. Catal., A 177, 111 (1999).
M. I. Litter and J. A. Navio, J. Photochem. Photobiol., A 98, 171 (1996).
C. J. Brinker and M. S. Harrington, Sol. Energy Mater. 5, 159 (1981).
T. M. R. Viseu and M. I. C. Ferreira, Vacuum 52, 115 (1999).
Y. Suda, H. Kawasaki, T. Ueda, and T. Ohshima, Thin Solid Films 475, 337 (2005).
M. Lottiaux, C. Boulesteix, and G. Nihoul, Thin Solid Films 170, 10 (1989).
K. S. Yeung and Y. W. Lam, Thin Solid Films 109, 169 (1983).
D. A. H. Hanaor, G. Trianni, and C. C. Sorrell, Surf. Coat. Technol. 205, 3659 (2011).
Z. T. Khodair, A. A. Kamil, and Y. K. Abdalaah, Phys. B (Amsterdam, Neth.) 5, 2338 (2015).
J. D. Hwang and T. H. Ho, Mater. Sci. Semicond. Process. 71, 396 (2017).
J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).
C. Y. W. Lin, D. Channei, P. Koshy, A. Nakaruk, and C. C. Sorrell, Ceram. Int. 38, 3943 (2012).
B. D. Cullity, Elements of X-Ray Diffraction (Addision-Wesley, Reading, 1956).
Y. A. K. Reddy, B. Ajitha, P. S.Reddy, Int. J. Curr. Eng. Technol. 2 (special issue), 351 (2014).
P. S. Patil and L. D. Kadam, Appl. Surf. Sci. 199, 211 (2002).
H. Belhadj, M. Ameri, B. Abbar, N. Moulay, A. Z. Bouyako Ameri, S. Mesbah, and Y. Al-Douri, Chin. J. Phys. 55, 1032 (2017).
Tamjida Rahman Luna, PhD Thesis (Bangladesh Univ. Eng. Technol., Dhaka, 2011).
W. Zhang, K. Wang, S. Zhu, Y. Li, F. Wang, and H. He, Chem. Eng. J. 155, 83 (2009). https://doi.org/10.1016/j.cej.2009.06.039
J. I. Langford and A. J. C. Wilson, J. Appl. Crystallogr. 11, 102 (1978).
P. Atkins and J. De Paula, Physical Chemistry (Freeman, New York, 2006).
A. Ruiz, A. Calleja, F. Espiell, A. Cornet, and J. R. Morante, IEEE Sens. J. 3, 189 (2003).
M. Dongol, A. El-Denglawey, A. F. Elhady, and A. A. Abuelwafa, Curr. Appl. Phys. 12, 13 (2012).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
M. Abdul Kaiyum, Kabir, M.H., Ali, M.M. et al. Effects of Iron Doping on Properties of TiO2 Thin Film Prepared by Spin Coating Method. J. Surf. Investig. 15, 1225–1231 (2021). https://doi.org/10.1134/S1027451021040078
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1027451021040078
Keywords:
- thin film
- band gap
- crystal structure
- surface roughness
- photovoltaic cell
- extrinsic impurities