Skip to main content
Log in

Harmonic Analysis of Topographic AFM Images of Nanoscale Globular Structures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

An algorithm is considered for the statistical analysis of images of nanoparticles obtained by scanning probe microscopy, based on the harmonic analysis of surface profiles with a complex relief. Using harmonic analysis, the average sizes of particles are determined and the sizes of their aggregates are estimated. The algorithm enables the analysis of large samples of particles; in this work, it is tested using model natural objects with an ordered and disordered arrangement of nanoscale particles. The dependence of the analysis results on the type of particle size distribution is also considered, and the features of determining the average size for Gaussian and logarithmically normal distributions are revealed. Among the possible applications of the algorithm, we can mention analysis of the average size of particles and the value of their aggregation in microdispersed and nanodispersed structures (thin amorphous films, colloidal systems, noncrystalline substances, polymers) based on three-dimensional or pseudo-three-dimensional microscopic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. F. J. Martin-Martinez, K. Jin, D. L. Barreiro, and M. J. Buehler, ACS Nano 12, 7425 (2018). https://doi.org/10.1021/acsnano.8b04379

    Article  CAS  Google Scholar 

  2. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  3. A. P. Chuklanov, P. A. Borodin, S. A. Ziganshina, and A. A. Bukharaev, Uch. Zap. Kazan. Gos. Univ. 150, 220 (2008).

    Google Scholar 

  4. V. A. Sevriuk, P. N. Brunkov, I. V. Shalnev, A. A. Gutkin, G. V. Klimko, S. V. Gronin, S. V. Sorokin, and S. G. Konnikov, Semiconductors 47, 930 (2013). https://doi.org/10.1134/S106378261307021X

    Article  CAS  Google Scholar 

  5. E. A. Men’shikov, A. V. Bol’shakova, O. I. Vinogradova, and I. V. Yaminskii, Prot. Met. Phys. Chem. Surf. 45, 105 (2009).

    Article  Google Scholar 

  6. Ye. A. Golubev, J. Crystal Growth 275, e2357 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.335

    Article  CAS  Google Scholar 

  7. Ye. A. Golubev, O. V. Kovaleva, and N. P. Yushkin, Fuel 87, 32 (2008). https://doi.org/10.1016/j.fuel.2007.04.005

    Article  CAS  Google Scholar 

  8. Ye. A. Golubev, N. N. Rozhkova, E. N. Kabachkov, Yu. M. Shul’ga, K. Natkaniec-Holderna, I. Natkaniec, I. V. Antonets, B. A. Makeev, N. A. Popova, V. A. Popova, and E. F. Sheka, J. Non-Cryst. Solids 524, 119608 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119608

    Article  CAS  Google Scholar 

  9. I. V. Antonets, L. N. Kotov, and E. A. Golubev, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 65 (2007).

  10. I. V. Antonets, L. N. Kotov, and E. A. Golubev, Mater. Chem. Phys. 240, 122097 (2020). https://doi.org/10.1016/j.matchemphys.2019.122097

    Article  CAS  Google Scholar 

  11. O. Julius and I. Smith III, Mathematics of Discrete Fourier Transformation (DFT) with Audio Applications (W3K, 2007).

  12. P. J. Daniell, Suppl. J. R. Stat. Soc. 8, 88 (1946).

    Google Scholar 

  13. V. I. Berezkin, S. V. Kholodkevich, and P. P. Konstantinov, Phys. Solid State 39, 1590 (1997). https://doi.org/10.1134/1.1129903

    Article  Google Scholar 

  14. E. A. Golubev, Phys. Solid State 55, 1078 (2013). https://doi.org/10.1134/S1063783413050107

    Article  CAS  Google Scholar 

  15. V. V. Kovalevski, A. V. Prikhodko, and P. R. Buseck, Carbon 43, 401 (2005). https://doi.org/10.1016/j.carbon.2004.09.030

    Article  CAS  Google Scholar 

  16. E. A. Golubev, I. V. Antonets, and V. I. Shcheglov, Mater. Chem. Phys. 226, 195 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.033

    Article  CAS  Google Scholar 

  17. I. V. Antonets, E. A. Golubev, V. G. Shavrov, and V. I. Shcheglov, Zh. Radioelektron., No. 4 (2019). https://doi.org/10.30898/1684-1719.2019.4.1

  18. G. Korn and T. Korn, Handbook of Mathematics for Scientists and Engineers (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  19. P. I. Romanovskii, Fourier Series. Field theory. Analytical and Special Functions. Laplace Transform (Fizmatgiz, Moscow, 1964) [in Russian].

    Google Scholar 

Download references

Funding

This study was carried out with financial support of the Russian Foundation for Basic Research and the National Natural Science Foundation of China (project no. 20-55-53019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Antonets or Ye. A. Golubev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonets, I.V., Golubev, Y.A. & Shcheglov, V.I. Harmonic Analysis of Topographic AFM Images of Nanoscale Globular Structures. J. Surf. Investig. 15, 615–622 (2021). https://doi.org/10.1134/S1027451021030216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030216

Keywords:

Navigation