Skip to main content
Log in

Nanoparticle Formation in Si Implanted with Zinc and Oxygen Ions With Subsequent Annealing in Vacuum

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Nanoparticle formation in silicon subsequently doped with Zn and О ions and annealed in vacuum is presented in this paper. Standard n-type Si plates with the (100) orientation, a thickness of 380 nm, and a diameter of 76 mm and grown by the Czochralski method are implanted with 64Zn+ ions with a dose of 5 × 1016 cm–2 and an energy of 50 keV and with 16О+ ions with a dose of 2 × 1017 cm–2 and an energy of 20 keV. The ion current does not exceed 0.5 µA/cm2 during implantation so that plate overheating in comparison to room temperature does not exceed 50°С. Then the plates were cut into samples with dimensions of 10 × 10 mm and annealed at a temperature of 400 to 900°С with a step of 100°С in vacuum for 30 min. It is discovered that, after implantation, an amorphized layer with a thickness of approximately 150 nm is formed in Si; amorphous Zn and O nanoparticles with dimensions of about 5 nm are formed in it. Radiation-induced defects are annealed during heat treatment, and the amorphized-layer thickness decreases. After annealing, a peak at a wavelength of 370 nm forms at 700°С in the photoluminescence spectrum; it is caused by the formation of ZnO-phase nanoparticles. This peak vanishes after annealing at 900°С, and a peak at a wavelength of 425 nm appears in the photoluminescence spectrum; it is due to the appearance of the Zn2SiO4 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. T. C. Collins and D. S. Reynolds, Zinc Oxide Materials for Electronic and Optoelectronic Device Application (Wiley, Chichester, 2011).

    Google Scholar 

  2. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007).

    Article  Google Scholar 

  3. C. Li, Y. Yang, X. W. Sun, W. Lei, X. B. Zhang, B. P. Wang, J. X. Wang, B. K. Tay, J. D. Ye, G. Q. Lo, and D. L. Kwong, Nanotecnology 18, 135604 (2007).

    Article  CAS  Google Scholar 

  4. G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).

    Article  CAS  Google Scholar 

  5. S. Chu, M. Olmedo, Zh. Yang, J. Kong, J. Liu, et al., Appl. Phys. Lett. 93, 181106 (2008).

    Article  Google Scholar 

  6. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schutz, P. A. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B: Condens. Matter Mater. Phys. 79, 205206 (2009).

    Article  Google Scholar 

  7. F. N. Meyers and K. J. Loh, Smart Struct. Syst. 12, 055 (2013).

  8. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184–185, 605 (1998).

    Article  Google Scholar 

  9. H. Chang, H. D. Park, K. S. Sohn, and J. D. Lee, J. Korean Phys. Soc. 34, 545 (1999).

    CAS  Google Scholar 

  10. M. M. Yusof M. H. Ani, and Suryanto, Adv. Mater. Res. 701, 172 (2013).

    Article  Google Scholar 

  11. Son Dong-Ick, Park Dong-Hee, Choi Won Kook, Cho Sung-Hwan, Kim Won-Tae, and Kim Tae Whan, Nanotechnology 20, 195203 (2009).

    Article  Google Scholar 

  12. H. Amekura, Y. Takeda, and N. Kishimoto, Mater. Lett. 222, 960 (2011).

    Google Scholar 

  13. N. Umeda, H. Amekura, and N. Kishimoto, Vacuum 83, 645 (2009).

    Article  Google Scholar 

  14. Y. Y. Shen, X. D. Zhang, D. C. Zhang, Y. H. Xue, L. H. Zhang, and C. L. Liu, Mater. Lett. 65, 2966 (2011).

    Article  CAS  Google Scholar 

  15. V. Privezentsev, V. Kulikauskas, E. Steinman, and A. Bazhenov, Phys. Status Solidi C 10, 48 (2013).

    Article  CAS  Google Scholar 

  16. A. G. Milnes, Deer Impurities in Semiconductors (Wiley, New York, 1973).

    Google Scholar 

  17. V. V. Privezentsev, A. V. Makunin, A. A. Batrakov, S. V. Ksenich, and A. V. Goryachev, Semiconductors 52, 645 (2018).

    Article  CAS  Google Scholar 

  18. J. F. Ziegler and J. P. Biersack, SRIM 2008. http://www.srim.org.

  19. Gwyddion. http://gwyddion.net/.

Download references

Funding

The work was supported in part within the framework of the State Assignment of the Scientific Research Institute of System Analysis, Russian Academy of Sciences (no. 0065-2019-0003 (AAAA-A19-119011590090-2)) and of the State Assignment of the Institute of the Solid-State Physics, Russian Academy of Sciences. The work was supported in part by the Collective Research Center “Material Science and Metallurgy” of the National University of Science and Technology “MISiS”, Project no. 0718-2020-0031) and by the Center of Collective Use “MEM-SEC” and “Sensorics” of the National Research University “MIET” (grant no. 16.2475.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Privezentsev.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privezentsev, V.V., Palagushkin, A.N., Kulikauskas, V.S. et al. Nanoparticle Formation in Si Implanted with Zinc and Oxygen Ions With Subsequent Annealing in Vacuum. J. Surf. Investig. 15, 453–460 (2021). https://doi.org/10.1134/S1027451021030150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021030150

Keywords:

Navigation