Skip to main content
Log in

On the Sputtering of Copper Phthalocyanine Molecules on a GaAs Substrate under Bombardment with Multiply Charged Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The dependence of the yield of sputtered copper phthalocyanine molecules (CuPc) on a GaAs single-crystal substrate on the charge and energy of bombarding multiply charged Biq+ ions (q = 1–5) is studied by means of secondary-ion mass spectroscopy in the energy range of 1–10 keV. The yield of secondary ions is measured by the scanning of primary ions in terms of the charge and by varying the magnetic field of the mass spectrometer of primary ions when tuning the mass spectrometer of secondary ions to the corresponding secondary ion. The yield of sputtered copper phthalocyanine molecules that are converted to positive CuPc+ ions on the surface of a surface-ionization emitter is studied as a function of the charge and energy of muiltiply charged Biq+ ions. An increase in the yield of sputtered phthalocyanine molecules is observed as the charge of multiply charged ions increases; it significantly advances the increase in the integrated sputtering yield, which is related to that in the kinetic energy proportional to the Biq+ ion charge (q = 1–5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. TOF–SIMS: Surface Analysis by Mass Spectrometry, 2nd ed., Ed. by J. C. Vickerman and D. Brigg (IM, Huddersfield, 2013).

  2. D. Stapel, O. Brox, and A. Beninghoven, Appl. Surf. Sci. 140, 156 (1998).

    Article  Google Scholar 

  3. G. Gillen and A. Fahey, Appl. Surf. Sci. 203, 209 (2003). https://doi.org/10.1016/S0169-4332(02)00627-X

    Article  Google Scholar 

  4. Y. L. Beyec, Int. J. Mass Spectrom. Ion Processes 174, 101 (1998). https://doi.org/10.1140/epjd/e2012-20521-y

    Article  CAS  Google Scholar 

  5. N. Kh. Dzhemilev, S. V. Verkhoturov, and U. Kh. Rasulev, Poverkhn.: Fiz., Khim., Mekh. 2, 86 (1986).

    Google Scholar 

  6. N. Kh. Dzhemilev, S. V. Verkhoturov, and U. Kh. Rasulev, Nucl. Instrum. Methods Phys. Res., Sect. B 29, 531 (1987).

    Google Scholar 

  7. N. Kh. Dzhemilev, S. V. Verkhoturov, and I. V. Veriovkin, Nucl. Instrum. Methods Phys. Res., Sect. B 51, 219 (1990).

    Google Scholar 

  8. S. Belykh, U. Kh. Rasulev, A. V. Samartsev, and I. V. Veryovkin, Nucl. Instrum. Methods Phys. Res., Sect. B 136, 773 (1998).

    Google Scholar 

  9. S. F. Belykh, I. S. Bitensky, D. Mullajanov, and U. Kh. Rasulev, Nucl. Instrum. Methods Phys. Res., Sect. B 129, 451 (1997).

    CAS  Google Scholar 

  10. S. N. Morozov and U. Kh. Rasulev, Nucl. Instrum. Methods Phys. Res., Sect. B 203, 192 (2003).

    CAS  Google Scholar 

  11. P. Sigmund and C. Claussen, J. Appl. Phys. 52, 990 (1981).

    Article  CAS  Google Scholar 

  12. S. N. Morozov and U. Kh. Rasulev, Appl. Surf. Sci. 231–232, 78 (2004).

    Article  Google Scholar 

  13. I. Katakuze, H. Ito, and T. Ichihara, Int. J. Mass Spectrom. Ion Processes 97, 47 (1990).

    Article  Google Scholar 

  14. W. Begemann, K. H. Meiwes-Broer, and H. O. Lutz, J. Phys. (Paris) 50, 133 (1989).

    Article  Google Scholar 

  15. S. R. Coon, W. F. Calaway, M. J. Pellin, and J. M. White, Surf. Sci. 298, 161 (1993). Doi https://doi.org/10.1016/0039-6028(93)90092-X

    Article  CAS  Google Scholar 

  16. H. M. Urbassek, Nucl. Instrum. Methods Phys. Res., Sect. B 31, 541 (1988).

    Google Scholar 

  17. I. S. Bitenski and E. S. Parilis, Nucl. Instrum. Methods Phys. Res., Sect. B 21, 26 (1987).

    Google Scholar 

  18. Sh. Akhunov and S. N. Morozov, J. Surf. Invest.: XРRay, Synchrotron Neutron Tech. 7, 580 (2013). https://doi.org/10.1134/S1027451013030208

    Article  CAS  Google Scholar 

  19. R. Heinrich and A. Wucher, Nucl. Instrum. Methods Phys. Res., Sect. B 140, 27 (1998).

    CAS  Google Scholar 

  20. M. Lindenblatt, R. Heinrich, A. Wucher, and B. J. Garrison, J. Chem. Phys. 115, 864 (2001).

    Article  Google Scholar 

  21. S. Bounaau, A. Brunelle, S. Della-Negra, J. Depauw, D. Jacquet, Y. LeBeyec, M. Pautrat, M. Fallavier, J. C. Poizat, and H. H. Andersen, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 144106 (2002).

    Article  Google Scholar 

  22. C. Staudt and A. Wucher, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 075419 (2002). https://doi.org/10.1103/PhysRevB.66.075419

    Article  CAS  Google Scholar 

  23. S. N. Morozov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 660 (2012). https://doi.org/10.1134/S1027451012080149

    Article  CAS  Google Scholar 

  24. Sh. Dzh. Akhunov and S. N. Morozov, Proceedings of the 24th International Conference on the Interaction of Ions with Surface (Moscow, 2019), Vol. 2, pp. 49–52.

  25. S. N. Morozov and U. Kh. Rasulev, in Proceedings of the 21st International Conference on the Interaction of Ions with Surface (Yaroslavl, 2013), p. 469.

  26. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aokic, and J. Matsuoa, Surf. Interface Anal. 43, 95 (2011). https://doi.org/10.1002/sia.3587

    Article  CAS  Google Scholar 

  27. Y. L. Beyec, Int. J. Mass. Spectrom. Ion Processes 174, 101 (1998).

    Article  Google Scholar 

  28. Sh. Dj. Akhunov, S. N. Morozov, and U. Kh. Rasulev, Nucl. Instrum. Methods Phys. Res., Sect. B 203, 146 (2003). https://doi.org/10.1016/S0168-583X(02)02200-0

    Article  CAS  Google Scholar 

  29. S. N. Morozov and U. Kh. Rasulev, Bull. Russ. Acad. Sci.: Phys. 80, 105 (2016).

    Article  CAS  Google Scholar 

  30. S. Morozov and U. Rasulev, in Proceedings of the SIMS Europe 2014 Conference (Munster, 2014), p. 113.

Download references

ACKNOWLEDGMENTS

We are grateful to Sergei Nikolaevich Morozov for participation in the experiments and data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. Dj. Akhunov or D. T. Usmanov.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhunov, S.D., Rasulev, U.K. & Usmanov, D.T. On the Sputtering of Copper Phthalocyanine Molecules on a GaAs Substrate under Bombardment with Multiply Charged Ions. J. Surf. Investig. 15, 396–400 (2021). https://doi.org/10.1134/S1027451021020208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020208

Keywords:

Navigation