Skip to main content
Log in

Effect of the Growth Modes of CaF2/(Si + CaF2)/CaF2/Si(111) Heterostructures on Their Photoluminescence Spectrum

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This work is devoted to studying the effect of the conditions of the formation of CaF2F2/(Si + CaF2)/CaF2/Si(111) structures on their emissivity in the visible region of the spectrum. Multilayer CaF2/(Si + CaF2)/CaF2/Si(111) heterostructures are grown on Si(111) substrates by molecular-beam epitaxy in a closed technological cycle. Photoluminescence is excited by a He–Cd laser with an emission wavelength of 325 nm. The spectra are measured at room temperature. The parameters of the technological process are selected to obtain structures capable of emitting in the visible range of the spectrum. It is found experimentally that luminescence in the CaF2/(Si + CaF2)/CaF2/Si(111) structures is observed only at a ratio of Si and CaF2 fluxes of 3.6–4.0. A 1.5-fold decrease in the growth rates of Si and CaF2 layers, as well as a decrease in the thickness of the CaF2 separation layers to 1 nm, does not affect the position of the maxima in the photoluminescence spectra. A change in the annealing mode of the CaF2/(Si + CaF2)/CaF2/Si(111) structures shifts the maximum in the photoluminescence spectra. Estimation of the sizes of silicon nanocrystals corresponding to the energies observed during photoluminescence correlates well with the experimental data of high-resolution transmission electron microscopy and photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990). https://doi.org/10.1063/1.103561

    Article  CAS  Google Scholar 

  2. G. C. John and V. A. Singh, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 5329 (1994). https://doi.org/10.1103/PhysRevB.50.5329

    Article  CAS  Google Scholar 

  3. N. V. Latukhina, D. A. Lizunkova, G. A. Rogozhina, et al., Fotonika 12, 508 (2018). https://doi.org/10.22184/1993-7296.2018.12.5.508.513

    Article  Google Scholar 

  4. G. Franzo, F. Priolo, S. Coffia, et al., Appl. Phys. Lett. 64, 2235 (1994). https://doi.org/10.1063/1.111655

    Article  CAS  Google Scholar 

  5. A. M. Emelyanov, N. A. Sobolev, and A. N. Yakimenko, Appl. Phys. Lett. 72, 1223 (1998). https://doi.org/10.1063/1.121020

    Article  CAS  Google Scholar 

  6. V. Kveder, V. Badylevich, E. Steinman, et al., Appl. Phys. Lett. 84, 2106 (2004). https://doi.org/10.1063/1.1689402

    Article  CAS  Google Scholar 

  7. A. A. Shklyaev, A. V. Latyshev, and M. Ichikava, Semiconductors 44, 423 (2010).

    Article  Google Scholar 

  8. N. A. Sobolev, A. E. Kalyadin, E. I. Shek, and K. F. Shtel’makh, Semiconductors 51, 1133 (2017). https://doi.org/10.1134/S1063782617090202

    Article  CAS  Google Scholar 

  9. N. A. Sobolev, A. E. Kalyadin, M. V. Konovalov, et al., Phys. Solid State 58, 2499 (2016). https://doi.org/10.1134/S1063783416120283

    Article  CAS  Google Scholar 

  10. A. E. Kalyadin, K. F. Shtel’makh, P. N. Aruev, et al., Semiconductors 54, 687 (2020). https://doi.org/10.1134/S1063782620060081

    Article  CAS  Google Scholar 

  11. N. A. Sobolev, A. E. Kalyadin, V. I. Sakharov, et al., Tech. Phys. Lett. 43, 50 (2017). https://doi.org/10.1134/S1063785017010126

    Article  CAS  Google Scholar 

  12. L. A. Vlasukova, F. F. Komarov, I. N. Parkhomenko, et al., “Luminescence of ion-implanted silicon in the IR range: Luminescence from a dislocation and A3B5 nanocrystals,” in Proceedings of the 12th Int. Conf. on Interaction of Radiation with a Solid (Minsk, 2017), p. 219.

  13. S. N. Nagornykh, V. I. Pavlenkov, D. I. Tetel’baum, et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 17, 252 (2014). https://doi.org/10.17073/1609 3577 -2014-4-252-256

  14. V. Kveder, E. A. Steinman, S. A. Shevchenko, and H. G. Grimmeiss, Phys. Rev. B: Condens. Matter Mater. Phys. 51, 10520 (1995). https://doi.org/10.1103/PhysRevB.51.10520

    Article  CAS  Google Scholar 

  15. L. Pavesi, L. Dal Negro, C. Mazzoleni, et al., Nature 408, 440 (2000). https://doi.org/10.1038/35044012

    Article  CAS  Google Scholar 

  16. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004). https://doi.org/10.1364/OPEX.12.005269

    Article  CAS  Google Scholar 

  17. T. Z. Lu, M. Alexe, R. Scholz, et al., J. Appl. Phys. 100, 01431 (2006). https://doi.org/10.1063/1.2214300

    Article  CAS  Google Scholar 

  18. C. Y. Ng, T. P. Chen, L. Ding, et al., Appl. Phys. Lett. 88, 063103 (2006). https://doi.org/10.1063/1.2172009

    Article  CAS  Google Scholar 

  19. Qi. Zhang, S. C. Bayliss, and D. A. Hutt, Appl. Phys. Lett. 66, 1977 (1995). https://doi.org/10.1063/1.113296

    Article  CAS  Google Scholar 

  20. V. Ioannou-Sougleridis, B. Kamenev, D. N. Kouvatsos, and A. G. Nassiopoulou, Mater. Sci. Eng. 101, 324 (2003). https://doi.org/10.1016/S0921-5107(02)00733-X

    Article  CAS  Google Scholar 

  21. V. A. Terekhov, E. I. Terukov, Yu. K. Undalov, and E. V. Parinova, 50, 212 (2016). https://doi.org/10.1134/S1063782616020251

  22. I. G. Neizvestnyi, V. A. Volodin, G. N. Kamaev, et al., Avtometriya 52, 84 (2016). https://doi.org/10.15372/AUT20160510

    Article  Google Scholar 

  23. M. Watanabe, T. Matsunuma, T. Maruyama, and Y. Maeda, Jpn. J. Appl. Phys. 37, 591 (1998). https://doi.org/10.1143/JJAP.37. L591

  24. T. Maruyama, N. Nakamura, and M. Watanabe, Jpn. J. Appl. Phys. 39, 1996 (2000). https://doi.org/10.1143/JJAP.39.1996

    Article  CAS  Google Scholar 

  25. T. Maruyama, N. Nakamura, and M. Watanabe, Jpn. J. Appl. Phys. 38, L904 (1999). https://doi.org/10.1143/JJAP.38.L904

    Article  CAS  Google Scholar 

  26. A. A. Velichko, V. A. Ilyushin, A. Yu. Krupin, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10, 912 (2016). https://doi.org/10.1134/S1027451016050165

    Article  CAS  Google Scholar 

  27. A. N. Mihailov, A. I. Belov, M. O. Marychev, et al., Physical Foundations of Ion-Beam Formation and Properties of Silicon Quantum Dots in a Dielectric (Educational-Methodical Complex) (Nizhegor. Gos. Univ., Nizhny Novgorod, 2010) [in Russian]. http://www.unn.ru/pages/e-library/methodmaterial/ 2010/32.pdf.

    Google Scholar 

  28. V. Ioannou-Sougleridis, T. Ouissse, A. G. Nassiopoulou, et al., J. Appl. Phys. 89, 610 (2001). https://doi.org/10.1063/1.1330551

    Article  CAS  Google Scholar 

  29. F. Bassani and S. Menard, Phys. Status Solidi 165 (49), 49 (1998). https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<49::AID-PSSA49>3.0.CO;2-L

    Article  CAS  Google Scholar 

  30. V. Ioannou-Sougleridis, A. G. Nassiopoulou, T. Ouisse, and F. Bassani, Appl. Phys. Lett. 79, 2076 (2001). https://doi.org/10.1063/1.1405004

    Article  CAS  Google Scholar 

  31. V. A. Burdov, Semiconductors 36, 1154 (2002).

    Article  CAS  Google Scholar 

  32. A. V. Belolipetskiy, M. O. Nestoklon, and I. N. Yassievich, Semiconductors 52, 1264 (2018). https://doi.org/10.1134/S1063782618100020

    Article  CAS  Google Scholar 

  33. A. A. Velichko, A. Yu. Krupin, and V. A. Gavrilenko, RF Patent No. 2642132, Byull. Izobret., No. 3 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Krupin or N. I. Filimonova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, A.A., Krupin, A.Y., Filimonova, N.I. et al. Effect of the Growth Modes of CaF2/(Si + CaF2)/CaF2/Si(111) Heterostructures on Their Photoluminescence Spectrum. J. Surf. Investig. 15, 424–429 (2021). https://doi.org/10.1134/S1027451021020166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020166

Keywords:

Navigation