Skip to main content
Log in

Thermal, X-Ray Structural and Microscopic Studies of the Effect of Transmembrane Pressure on the Crystallographic and Surface Parameters of OFAM-K and OPMN-P Nanofiltration Membranes

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Experimental studies and analysis of the effect of transmembrane pressure on the composite porous film material of OFAM-K, OPMN-P membranes and their components by differential scanning calorimetry (DSC), X-ray diffraction analysis and optical microscopy are presented. Investigations of nanofiltration composite materials by differential scanning calorimetry make it possible to study thermal effects that cause changes in the structure and phase transformations with increasing temperature in the membrane sample. X-ray diffraction analysis of the crystalline and amorphous regions of composite films using the radial distribution function allow the change in the unit cells in the membrane polymer sample due to an increase in the interatomic distances to be established. The crystallinity in a membrane sample exposed to transmembrane pressure increases from 44 to 55% due to the appearance of an additional crystalline phase in the film. Optical microscopy studies of the membrane substrate show a morphological feature that resembles fiber compaction, as well as the presence of microscopic voids, which can ultimately be explained by the presence of more knitted fibers in some areas of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. Shen, D. Zhang, Y. Wei, Z. Zhao, X. Ma, X. Zhao, S. Wang, and W. Yang, Polymers 11, 1511 (2019). https://doi.org/10.3390/polym11091511

    Article  CAS  Google Scholar 

  2. I. V. Korol’kov, A. A. Mashentseva, O. Gyuven, and M. V. Zdorovets, Membr. Membr. Tekhnol. 7, 414 (2017). https://doi.org/10.1134/S2218117217060062

    Article  Google Scholar 

  3. G. K. El’yashevich, I. S. Kuryndin, V. K. Lavrent’ev, E. N. Popova, and V. Bukosek, // Phus. Solid State 60, 2019 (2018). https://doi.org/10.1134/S1063783418100074

    Article  Google Scholar 

  4. G. E. Abrosimova and A. S. Aronin, J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 12, 492 (2018). https://doi.org/10.1134/S1027451018030023

    Article  CAS  Google Scholar 

  5. S. K. Gupta, P. Singh, and R. Kumar, Radiat. Eff. Defects Solids 169, 679 (2014). https://doi.org/10.1080/10420150.2014.931401

    Article  CAS  Google Scholar 

  6. S. Wu, X. Qin, and M. Li, J. Ind. Text. 44, 85 (2014).

    Article  CAS  Google Scholar 

  7. S. Velu, K. Rambabu, and L. Muruganandam, Int. J. ChemTech Res. 6, 565 (2014).

    CAS  Google Scholar 

  8. S. Wu, X. Qin, and M. Li, J. Ind. Text. 44, 85 (2014).

    Article  CAS  Google Scholar 

  9. M. Torogi, A. Raisia, and A. Aroujaliana, Polym. Adv. Technol. 25, 711 (2014). https://doi.org/10.1002/pat.3275

    Article  CAS  Google Scholar 

  10. A. Bocahut, J. Y. Delannoy, C. Vergelati, and K. Mazeau, Cellulose 21, 3897 (2014). https://doi.org/10.1007/s10570-014-0399-8

    Article  CAS  Google Scholar 

  11. V. V. Parashchuk and A. V. Volkov, Membr. Ser. Krit. Tekhnol., No. 1, 25 (2008).

  12. A. Kusoglu and A. Z. Weber, Chem. Rev., 117, 987 (2017). https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  Google Scholar 

  13. A. I. Bonn, V. G. Dzjubenko, and I. I. Shishova, Vysokomol. Soedin, Ser. B 35, 922 (1993).

    Google Scholar 

  14. D. V. Pugachev, Candidate’s Dissertation in Engineering (Tambov State Tech. Univ., Tambov, 2010).

  15. S. I. Lazarev, Yu. M. Golovin, O. A. Kovaleva, V. N. Kholodilin, and I. V. Khorokhorina, Prot. Met. Phys. Chem. Surf. 54, 804 (2018). https://doi.org/10.1134/S2070205118040081

    Article  CAS  Google Scholar 

  16. V. M. Polikarpov, Doctoral Dissertation in Chemistry (Moscow State Univ., Moscow, 2003).

  17. Yu. A. Fedotov and N. N. Smirnova, Plast. Massy, No. 14, 18 (2008).

    Google Scholar 

  18. O. A. Kovaleva, Doctoral Dissertation in Engineering (Tambov State Tech. Univ., Tambov, 2019).

  19. J. Radulović, Sci. Tech. Rev. 55 (3–4), 21 (2005).

    Google Scholar 

  20. M. Dupuis, R. Devanathan, V.-A. Glezakou, and A. Venkatnathan, Chemical and Materials Sciences Division, Pacific North-West National Laboratory. https://www.hydrogen.energy.gov/pdfs/review07/bes_6_dupuis.pdfwww.hydrogen.energy.gov/pdfs/review07/bes_6_dupuis.pdf. Accessed February 13, 2016.

  21. M. Shen, S. Keten, and R. M. Lueptow, J. Membr. Sci. 509, 36 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Konovalov.

Additional information

Translated by M. Nickolsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Kovaleva, O.A., Konovalov, D.N. et al. Thermal, X-Ray Structural and Microscopic Studies of the Effect of Transmembrane Pressure on the Crystallographic and Surface Parameters of OFAM-K and OPMN-P Nanofiltration Membranes. J. Surf. Investig. 15, 277–284 (2021). https://doi.org/10.1134/S1027451021020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020087

Keywords:

Navigation