Skip to main content

Accurate Measurement of the Beta-Asymmetry in Neutron Decay Rules out Dark Decay Mode

Abstract

The question of the nature of dark matter is one of the major challenges of elementary particle physics. Not surprisingly, the recent suggestion of a dark decay channel as a solution to persisting discrepancies in neutron lifetime measurements has initiated substantial research activity. We discuss the accurate measurement of the parity violating β-asymmetry using Perkeo III. The result is about five times more precise than the current world average and resolves a long-standing discrepancy. Based on this, we largely rule out the dark decay mode interpretation. We derive a new world average of the weak axial coupling and obtain a competitive value of the first element of the quark mixing matrix Vud from neutron decay.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    J. D. Jackson, S. B. Treiman, and H. W. Wyld, Phys. Rev. 106, 517 (1957). https://doi.org/10.1103/PhysRev.106.517

    CAS  Article  Google Scholar 

  2. 2

    C. C. Chang, A. N. Nicholson, E. Rinaldi, et al., Nature 558, 91 (2018). https://doi.org/10.1038/s41586-018-0161-8

    CAS  Article  Google Scholar 

  3. 3

    M. Gonzáles-Alonso, O. Naviliat-Cuncic, and N. Severijns, Prog. Part. Nucl. Phys. 104, 165, (2018). https://doi.org/10.1016/j.ppnp.2018.08.002

    CAS  Article  Google Scholar 

  4. 4

    B. Fornal and B. Grinstein, Phys. Rev. Lett. 120, 191801 (2018). https://doi.org/10.1103/PhysRevLett.120.191801

    CAS  Article  Google Scholar 

  5. 5

    A. T. Yue, M. S. Dewey, D. M. Gilliam, et al., Phys. Rev. Lett. 111, 222501 (2013). https://doi.org/10.1103/PhysRevLett.111.222501

    CAS  Article  Google Scholar 

  6. 6

    A. Serebrov, V. Varlamov, A. Kharitonov, et al., Phys. Lett. B 605, 72 (2005). https://doi.org/10.1016/j.physletb.2004.11.013

    CAS  Article  Google Scholar 

  7. 7

    F. E. Wietfeldt, Atoms 6 (4), 70 (2018). https://doi.org/10.3390/atoms6040070

    CAS  Article  Google Scholar 

  8. 8

    M. Klopf, E. Jericha, B. Märkisch, et al., Phys. Rev. Lett. 122, 222503 (2019). https://doi.org/10.1103/PhysRevLett.122.222503

    CAS  Article  Google Scholar 

  9. 9

    A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. Lett. 120, 202002 (2018). https://doi.org/10.1103/PhysRevLett.120.202002

    CAS  Article  Google Scholar 

  10. 10

    A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. D 100, 073008 (2019). https://doi.org/10.1103/PhysRevD.100.073008

    CAS  Article  Google Scholar 

  11. 11

    D. Dubbers, H. Saul, B. Märkisch, et al., Phys. Lett. B 791, 6 (2019). https://doi.org/10.1016/j.physletb.2019.02.013

    CAS  Article  Google Scholar 

  12. 12

    B. Märkisch, H. Mest, H. Saul, et al., Phys. Rev. Lett. 122, 222503 (2019). https://doi.org/10.1103/PhysRevLett.122.242501

    Article  Google Scholar 

  13. 13

    C. S. Wu, E. Ambler, R. W. Hayward, et al., Phys. Rev. 105, 1413 (1957). https://doi.org/10.1103/PhysRev.105.1413

    CAS  Article  Google Scholar 

  14. 14

    B. Märkisch, H. Abele, D. Dubbers, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 611, 216 (2009). https://doi.org/10.1016/j.nima.2009.07.066

    CAS  Article  Google Scholar 

  15. 15

    D. Mund, B. Märkisch, M. Deissenroth, et al., Phys. Rev. Lett. 110, 172502 (2013). https://doi.org/10.1103/PhysRevLett.110.172502

    CAS  Article  Google Scholar 

  16. 16

    P. Bopp, D. Dubbers, L. Hornig, et al., Phys. Rev. Lett. 56, 919 (1986). https://doi.org/10.1103/PhysRevLett.56.919

    CAS  Article  Google Scholar 

  17. 17

    C. Klauser, T. Bigault, N. Rebrova, and T. Soldner, Phys. Procedia 42, 99 (2013). https://doi.org/10.1016/j.phpro.2013.03.181

    CAS  Article  Google Scholar 

  18. 18

    C. Klauser, T. Bigault, P. Böni, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 840, 181 (2016). https://doi.org/10.1016/j.nima.2016.09.056

    CAS  Article  Google Scholar 

  19. 19

    M. Kreuz, V. Nesvizhevsky, A. Petoukhov, and T. Soldner, Nucl. Instrum. Methods Phys. Res., Sect. A 547, 583 (2005). https://doi.org/10.1016/j.nima.2005.03.154

    CAS  Article  Google Scholar 

  20. 20

    H. Abele, S. Baeßler, D. Dubbers, et al., Phys. Lett. B 407, 212 (1997). https://doi.org/10.1016/S0370-2693(97)00739-9

    CAS  Article  Google Scholar 

  21. 21

    B. Yerozolimsky, I. Kuznetsov, Y. Mostovoy, and I. Stepanenko, Phys. Lett. B 412, 240 (1997). https://doi.org/10.1016/S0370-2693(97)01004-6

    CAS  Article  Google Scholar 

  22. 22

    P. Liaud, K. Schreckenbach, R. Kossakowski, et al., Nucl. Phys. A 612, 53 (1997). https://doi.org/10.1016/S0375-9474(96)00325-9

    Article  Google Scholar 

  23. 23

    Yu. A. Mostovoi, I. A. Kuznetsov, V. A. Solovei, et al., Phys. At. Nucl. 64, 1955 (2001). https://doi.org/10.1134/1.1423745

    CAS  Article  Google Scholar 

  24. 24

    J. Liu, et al. (UCNA Collab.), Phys. Rev. Lett. 105, 181803 (2010). https://doi.org/10.1103/PhysRevLett.105.181803

    CAS  Article  Google Scholar 

  25. 25

    B. Plaster, et al. (UCNA Collab.), Phys. Rev. C: Nucl. Phys. 86, 055501 (2012). https://doi.org/10.1103/PhysRevC.86.055501

    CAS  Article  Google Scholar 

  26. 26

    M. P. Mendenhall, et al. (UCNA Collab.), Phys. Rev. C: Nucl. Phys. 87, 032501 (2013). https://doi.org/10.1103/PhysRevC.87.032501

    CAS  Article  Google Scholar 

  27. 27

    M. A.-P. Brown, et al. (UCNA Collab.), Phys. Rev. C: Nucl. Phys. 97, 035505 (2018). https://doi.org/10.1103/PhysRevC.97.035505

    CAS  Article  Google Scholar 

  28. 28

    M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  Google Scholar 

  29. 29

    M. Beck, F. Ayala Guardia, S. Baeßler, et al., https://arxiv.org/abs/1908.04785.

  30. 30

    C.-Y. Seng, M. Gorchtein, and M. J. Ramsey-Musolf, Phys. Rev. D 100, 013001 (2019). https://doi.org/10.1103/PhysRevD.100.013001

    CAS  Article  Google Scholar 

  31. 31

    J. C. Hardy and I. S. Towner, https://arxiv.org/abs/1807.01146.

  32. 32

    C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018). https://doi.org/10.1103/PhysRevLett.121.241804

    Article  Google Scholar 

  33. 33

    M. Gorchtein, Phys. Rev. Lett. 123, 042503 (2019). https://doi.org/10.1103/PhysRevLett.123.042503

    CAS  Article  Google Scholar 

  34. 34

    A. P. Serebrov, E. A. Kolomensky, A. K. Fomin, et al., Phys. Rev. C 97, 055503 (2018). https://doi.org/10.1103/PhysRevC.97.055503

    CAS  Article  Google Scholar 

  35. 35

    R. W. Pattie, N. B. Callahan, C. Cude-Woods, et al., Science 360, 627 (2018), https://doi.org/10.1126/science.aan8895

    CAS  Article  Google Scholar 

  36. 36

    V. F. Ezhov, A. Z. Andreev, G. Ban, et al., JETP Lett. 107, 671 (2018). https://doi.org/10.7868/S0370274X18110036

    CAS  Article  Google Scholar 

  37. 37

    S. Hoggerheide, et al. (BL2 Collab.), EPJ Web Conf. 219, 03002 (2019). https://doi.org/10.1051/epjconf/201921903002

  38. 38

    J. Byrne and D. L. Worcester, J. Phys. G: Nucl. Phys. 46, 085001 (2019). https://doi.org/10.1088/1361-6471/ab256b

    CAS  Article  Google Scholar 

  39. 39

    D. Dubbers, H. Abele, S. Baeßler, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 596, 238 (2008), https://doi.org/10.1016/j.nima.2008.07.157

    CAS  Article  Google Scholar 

  40. 40

    X. Wang, et al. (PERC Collab.), EPJ Web Conf. 219, 04007 (2019). https://doi.org/10.1051/epjconf/201921904007

  41. 41

    T. Soldner, H. Abele, G. Konrad, et al., EPJ Web Conf. 219, 10003 (2019). https://doi.org/10.1051/epjconf/201921910003

Download references

Funding

This work was supported by the Priority Program SPP 1491 of the German Research Foundation (DFG) (contract no. MA 4944/1-2) and the Austrian Science Fund (FWF) (contract no. P 26 636-N20).

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Märkisch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Märkisch, B., Abele, H., Dubbers, D. et al. Accurate Measurement of the Beta-Asymmetry in Neutron Decay Rules out Dark Decay Mode. J. Synch. Investig. 14, S140–S143 (2020). https://doi.org/10.1134/S1027451020070319

Download citation

Keywords:

  • neutron decay
  • weak interaction
  • parity violation