Skip to main content
Log in

Radiation Defects Induced by Proton Exposure in Hollow Zinc-Oxide Particles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Zinc-oxide powders consisting of spherical hollow particles are obtained by hydrothermal synthesis. Comparative analysis of the diffuse reflectance spectra and their changes after irradiation with 100-keV protons of powders of micrometer-sized hollow and bulk particles of zinc oxide is carried out. We present the results of the physical and mathematical simulation of the interaction of a low-energy proton beam with zinc-oxide particles, using the GEANT4 software package. The calculation results and the experimental data are compared. Hollow particles have a greater radiation resistance to protons compared to micrometer-sized bulk particles. The effect is determined by the absence of radiation-induced defects in the volume of spherical particles, a large ionization loss associated with surface-defect formation, and the significant relaxation of radiation-induced defects in a thin layer of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Kiomarsipour, R. S. Razavia, and K. Ghani, Dyes Pigments 96, 403 (2013).

    Article  CAS  Google Scholar 

  2. S. C. Singh, J. Nanoeng. Nanomanuf. 3, 1 (2013).

    Google Scholar 

  3. J. Allison, K. Amako, J. Apostolakis, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186 (2016).

    CAS  Google Scholar 

  4. V. V. Neshchimenko, C. D. Li, M. M. Mikhailov, and A. N. Dudin, Phys. Technol. Nanostr. Mater. 4, 338 (2018).

    Google Scholar 

  5. V. V. Abraimov, A. A. Negoda, and L. V. Kolybaev, Kosm. Nauka Tekhnol. 1 (2–6), 76 (1995).

    Article  Google Scholar 

  6. D. L. Dexter, Phys. Rev. B 101, 48 (1956).

    Article  CAS  Google Scholar 

  7. C. Leroy and P. Rancoita, Principles of Radiation Interaction in Matter and Detection (World Sci., Singapore, 2016).

    Book  Google Scholar 

  8. M. Kahouli, A. Barhoumi, A. Bouzid, et al., Superlattices Microstruct. 85, 7 (2015).

    Article  CAS  Google Scholar 

  9. F. Kröger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).

    Book  Google Scholar 

  10. K. V. Shalimova, Physics of Semiconductors (Energiya, Moscow, 1976) [in Russian].

    Google Scholar 

  11. P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).

    Article  Google Scholar 

  12. F. Oba, A. Togo, I. Tanaka, et al., Phys. Rev. B 77, 245202 (2008).

    Article  Google Scholar 

  13. S. A. M. Lima, F. A. Sigoli, M. Jafelicci, Jr., and M. R. Davolos, Int. J. Inorg. Mater 3, 749 (2001).

    Article  CAS  Google Scholar 

  14. J. Hu and B. C. Pan, J. Chem. Phys. 129, 154706 (2008).

    Article  CAS  Google Scholar 

  15. Y. Sun and H. Wang, Phys. B (Amsterdam, Neth.) 325, 157 (2003).

  16. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Dudin or V. V. Neshchimenko.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudin, A.N., Neshchimenko, V.V. & Yurina, V.Y. Radiation Defects Induced by Proton Exposure in Hollow Zinc-Oxide Particles. J. Surf. Investig. 14, 823–829 (2020). https://doi.org/10.1134/S1027451020040242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040242

Keywords:

Navigation