Comprehensive Investigation of Some Ordinary Chondrites Based on X-Ray Methods and Mössbauer Spectroscopy

Abstract

Comprehensive investigation into ordinary chondrites presented by the species of Markovka (H4 petrological type), Polujamki (H4 type) and Jiddat Al Harasis 055 (L4-5 type) is performed. The element and phase compositions, as well as the oxidation states of iron and nickel in the chondrites, are examined via micro X-ray fluorescence (micro-XRF), Mössbauer spectroscopy and synchrotron-based X-ray absorption spectroscopy. Elemental composition analysis is performed using micro-XRF, allowing one to obtain element distribution maps for the meteorite samples. According to Mössbauer spectroscopy data gathered on iron-containing phases, the chondrites consist mainly of olivine and goethite with a small amount of pyroxene and hematite. A low amount of troilite and kamacite is also observed in the Markovka and Polujamki specimens. The oxidation states of 3d metals in the chondrites are estimated from Fe and Ni K-edge X-ray absorption near-edge structure (XANES) spectra. Most nickel atoms in the meteorites are found to be in the Ni2+ state, while iron has an average oxidation state of +2.4 which is commensurate with the Mössbauer spectroscopy data. Infrared spectroscopy analysis of the chondrites is implemented as well. The results are important from the viewpoint of statistics acquisition on ordinary chondrites, as well as for further understanding of their formation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    J. Aramendia, L. Gomez-Nubla, K. Castro, et al., Trends Anal. Chem. 98, 36 (2018). https://doi.org/10.1016/j.trac.2017.10.018

    CAS  Article  Google Scholar 

  2. 2

    K. C. Daviau, R. G. Mayne, and A. J. Ehlmann, 43rd Lunar Planet. Sci. Conf (The Woodlands, TX, 2012).

  3. 3

    I. Torre-Fidez, J. Aramendia, L. Gomez-Nubla, et al., Anal. Bioanal. Chem 410, 7477 (2018). https://doi.org/10.1007/s00216-018-1363-5

    CAS  Article  Google Scholar 

  4. 4

    M. Haschke, U. Rossek, R. Tagle, and U. Waldschläger, Adv X-Ray Anal. 55, 286 (2012).

    Google Scholar 

  5. 5

    J. M. Cadogan, L. Rebbouh, J. V. J. Mills, and P. A. Bland, Hyperfine Interact. 222 (Suppl. 2), 91 (2013). https://doi.org/10.1007/s10751-012-0644-1

    CAS  Article  Google Scholar 

  6. 6

    A. A. Maksimova, M. I. Oshtrakh, E. V. Petrova, et al., Hyperfine Interact. 237, 134 (2016). https://doi.org/10.1007/s10751-016-1344-z

    CAS  Article  Google Scholar 

  7. 7

    N. N. Elewa and J. M. Cadogan, Hyperfine Interact. 238, 4 (2017). https://doi.org/10.1007/s10751-016-1350-1

    CAS  Article  Google Scholar 

  8. 8

    N. N. Elewa, R. Cobas, and J. M. Cadogan, Hyperfine Interact. 237, 107 (2016). https://doi.org/10.1007/s10751-016-1315-4

    CAS  Article  Google Scholar 

  9. 9

    W. Sato, M.·Nakagawa, N. Shirai, and M. Ebihara, Hyperfine Interact. 239, 13 (2018). https://doi.org/10.1007/s10751-018-1489-z

    CAS  Article  Google Scholar 

  10. 10

    Y. Kebukawa, C. M. O’D. Alexander, and G. D. Cody, Geochim. Cosmochim. Acta 75, 3530 (2011). https://doi.org/10.1016/j.gca.2011.03.037

    CAS  Article  Google Scholar 

  11. 11

    C. M. O’D. Alexander, G. D. Cody, Y. Kebukawa, et al., Meteorit. Planet. Sci 49 (4), 503 (2014). https://doi.org/10.1111/maps.12282

    CAS  Article  Google Scholar 

  12. 12

    A. Kereszturi, I. Gyollai, Zc. Kereszty, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 637 (2017). https://doi.org/10.1016/j.saa.2016.10.012

    CAS  Article  Google Scholar 

  13. 13

    I. Gyollai, A. Kereszturi, Z. Kereszty, et al., Centr. Eur. Geol. 60/2, 173 (2017). https://doi.org/10.1556/24.60.2017.007

    CAS  Article  Google Scholar 

  14. 14

    Y. A. Abdu, F. C. Hawthorne, and M. E. Varela, Astrophys. J. Lett. 856, L9 (2018). https://doi.org/10.3847/2041-8213/aab433

    CAS  Article  Google Scholar 

  15. 15

    G. Bunker, Introduction to XAFS: A Practical Guide to X‑Ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  16. 16

    X-Ray Absorption and X-Ray Emission Spectroscopy. Theory and Applications, Ed. by J. van Bokhoven and C. Lamberti, (Wiley, Chichester, UK, 2016).

    Google Scholar 

  17. 17

    A. N. Kravtsova, L. V. Guda, O. E. Polozhentsev et al., J. Struct. Chem. 59 (7), 1691 (2018). https://doi.org/10.26902/JSC20180725

    CAS  Article  Google Scholar 

  18. 18

    A. J. Berry, P. F. Schofield, A. N. Kravtsova, et al., Chem. Geol. 466, 32 (2017). https://doi.org/10.1016/j.chemgeo.2017.03.031

    CAS  Article  Google Scholar 

  19. 19

    A. N. Kravtsova, A. V. Soldatov, A. M. Walker, and A. J. Berry, J. Phys. Conf. Ser. 712, 012089 (2016). https://doi.org/10.1088/1742-6596/712/1/012089

    CAS  Article  Google Scholar 

  20. 20

    A. N. Kravtsova, A. A. Guda, J. Goettlicher, et al., J. Phys. Conf. Ser. 712, 012096 (2016). https://doi.org/10.1088/1742-6596/712/1/012096

    CAS  Article  Google Scholar 

  21. 21

    A. N. Kravtsova, A. A. Guda, A. V. Soldatov, et al., Opt. Spectrosc. 119 (6), 982 (2015). https://doi.org/10.7868/S003040341511015X

    CAS  Article  Google Scholar 

  22. 22

    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, et al., Opt. Spectrosc. 115 (6), 858 (2013). https://doi.org/10.7868/S0030403413120179

    CAS  Article  Google Scholar 

  23. 23

    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, and A. J. Berry, Opt. Spectrosc. 111 (6), 936 (2011).

    CAS  Article  Google Scholar 

  24. 24

    I. S. Rodina, A. N. Kravtsova, M. A. Soldatov, et al., J. Phys. Conf. Ser 190, 012181 (2009). https://doi.org/10.1088/1742-6596/190/1/012181

    CAS  Article  Google Scholar 

  25. 25

    Y. Kebukawa, M. E. Zolensky, A. L. D. Kilcoyne, et al., Meteorit. Planet. Sci 49, 2095 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Y. Kebukawa, M. E. Zolensky, M. Fries, et al., 47th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2016), p. 1802.

  27. 27

    S. Wirick, G. J. Flynn, C. Jacobsen, and L. P. Keller, 37th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2006).

  28. 28

    H. Yabuta, S. Amari, J. Matsuda, et al., 41st Lunar Planet. Sci. Conf. (The Woodlands, TX, 2010), p. 1202.

  29. 29

    F. L. le Formal, N. Guijarro, W. S. Bourée, et al., Energy Environ. Sci 9, 3448 (2016). https://doi.org/10.1039/C6EE02375D

    CAS  Article  Google Scholar 

  30. 30

    M. Bose, R. A. Root, and S. Pizzarello, Meteorit. Planet. Sci 52, 546 (2017). https://doi.org/10.1111/maps.12811

    CAS  Article  Google Scholar 

  31. 31

    H. Ono, A. Takenouchi and T. Mikouchi, 79th Annual Meeting of the Meteoritical Society (Berlin, Germany, 2016).

  32. 32

    A. J. King, P. F. Schofield, J. F. W. Mosselmans, and S. S. Russell, 77th Annual Meeting of the Meteoritical Society (Casablanca, Morocco, 2014).

  33. 33

    A. Garenne, P. Beck, G. Montes-Hernandez, et al., 45th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2014).

  34. 34

    F. -R. Orthous-Daunay, E. Quirico, L. Lemelle, et al., Earth Planet. Sci. Lett. 300, 321 (2010). https://doi.org/10.1016/j.epsl.2010.10.012

    CAS  Article  Google Scholar 

  35. 35

    P. Beck, V. De Andrade, F. -R. Orthous-Daunay, et al., Geochim. Cosmochim. Acta 99, 305 (2012). https://doi.org/10.1016/j.gca.2012.04.041

    CAS  Article  Google Scholar 

  36. 36

    A. Ali, S. J. Nasir, I. Jabeen, et al., Meteorit. Planet. Sci 52, 1991 (2017). https://doi.org/10.1111/maps.12903

    CAS  Article  Google Scholar 

  37. 37

    T. Yokoyama, K. Misawa, O. Okano, et al., Earth Planet. Sci. Lett. 458, 233 (2017). https://doi.org/10.1016/j.epsl.2016.10.037

    CAS  Article  Google Scholar 

  38. 38

    S. Wirick, G. J. Flynn, S. Sutton, and M. E. Zolensky, 45th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2014).

  39. 39

    A. N. Mikhanov and N. D. Kotel’nikova, Meteoritika 47, 20 (1988).

    Google Scholar 

  40. 40

    O. A. Kirova, M. I. D’yakonova, and V. Ya Kharitonova, Meteoritika 34, 57 (1975).

    CAS  Google Scholar 

  41. 41

    S. S. Russell, L. Folco, M. M. Grady, et al., Meteorit. Planet. Sci 39, A 215 (2004).

  42. 42

    M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc 1489, 178 (2012). https://doi.org/10.1063/1.4759488

    CAS  Article  Google Scholar 

  43. 43

    B. Ravel and M. Newville, J. Synchrotron Radiat 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    CAS  Article  Google Scholar 

  44. 44

    F. Menil, J. Phys. Chem. Solids 46 (7), 763 (1985). https://doi.org/10.1016/0022-3697(85)90001-0

    CAS  Article  Google Scholar 

  45. 45

    Y. A. Abdu and T. Ericsson, Meteorit. Planet. Sci 32, 373 (1997).

    CAS  Article  Google Scholar 

  46. 46

    E. Dos Santos, J. Gattacceca, P. Rochette, et al., Phys. Earth Planet. Inter. 242, 50 (2015). https://doi.org/10.1016/j.pepi.2015.01.004

    CAS  Article  Google Scholar 

  47. 47

    B. S. Paliwal, R. P. Tripathi, H. C. Verma, et al., Meteorit. Planet. Sci 35, 639 (2000).

    CAS  Article  Google Scholar 

  48. 48

    A. M. Gismelseed, Y. A. Abdu, M. H. Shaddad, et al., Meteorit. Planet. Sci 49, 1485 (2014).

    CAS  Article  Google Scholar 

  49. 49

    S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009).

    Article  Google Scholar 

  50. 50

    W. Kündig and H. Bömmel, Phys. Rev. 142, 327 (1966). https://doi.org/10.1103/PhysRev.142.327

    Article  Google Scholar 

  51. 51

    S. Bocquet, R. J. Pollard, and J. D. Cashion, Phys. Rev. 46, 11657 (1992). https://doi.org/10.1103/PhysRevB.46.11657

    CAS  Article  Google Scholar 

  52. 52

    U. Schwertmann, P. Cambier, and E. Murad, Clays Clay Miner. 33, 369 (1985).

    CAS  Article  Google Scholar 

  53. 53

    M. Wilke, F. Farges, P. -E. Petit, et al., Am. Mineral. 86, 714 (2001). https://doi.org/10.2138/am-2001-5-612

    CAS  Article  Google Scholar 

  54. 54

    A. N. Kravtsova, L. V. Guda, A. A. Guda, et al., Radiat. Phys. Chem. (in press). https://doi.org/10.1016/j.radphyschem.2018.12.017

  55. 55

    G. Giuli, S. G. Eeckhout, E. Paris, et al., Meteorit. Planet. Sci. 40, 1575 (2005). https://doi.org/10.1111/j.1945-5100.2005.tb00132.x

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A. A. Tereshchenko for help in acquiring the IR spectroscopy data.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (state task no. 16.3871.2017/4.6).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravtsova.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guda, L.V., Kravtsova, A.N., Guda, A.A. et al. Comprehensive Investigation of Some Ordinary Chondrites Based on X-Ray Methods and Mössbauer Spectroscopy. J. Synch. Investig. 13, 995–1004 (2019). https://doi.org/10.1134/S1027451019060089

Download citation

Keywords:

  • meteorites
  • ordinary chondrites
  • element and phase composition
  • iron and nickel oxidation state
  • micro XRF analysis
  • element mapping
  • Mössbauer spectroscopy
  • X-ray absorption spectroscopy
  • XANES