Skip to main content
Log in

A Study of the Kinetics of Oxidation of Titanium Nanolayers and Their Application in Neutron Optical Devices

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of 10–40-nm-thick titanium films in air is studied by combining X-ray and neutron reflectometry. It is found that the thickness of the oxide layer on the surface of Ti nanolayers does not increase after keeping the samples at room temperature for a year. At temperatures of 100–300°C the oxidation kinetic curves of Ti nanolayers are described by a logarithmic dependence. The obtained results indicate the applicability of the Cabrera–Mott and Evans model approximations to describe the oxidation process of Ti nanolayers in air. Examples of the application of Ti nanolayers in polarizing mirrors and a neutron mirror spin flipper are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. B. J. Lin, H. T. Zhu, A. K. Tieu, and G. Triani, Mater. Sci. Forum 773–774, 616 (2014).

    Google Scholar 

  2. X. Li, Y. Jin, D. Liu, et al., Surf. Rev. Lett. 18, 61 (2011).

    Article  Google Scholar 

  3. K. Khojier and H. Savaloni, Vacuum 84, 770 (2010).

    Article  Google Scholar 

  4. Y. L. Jeyachandran, B. Karunagaran, Sa. K. Narayandass, et al., Mater. Sci. Engin. A 431, 277 (2006).

    Article  Google Scholar 

  5. T. Hasegawa, S. Munakata, S. Imanishi, et al., Surf. Sci. 606, 414 (2012).

    Article  Google Scholar 

  6. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res. A 613, 15 (2010).

    Article  Google Scholar 

  7. U. R. Evans, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications (St Martin’s Press, NY, 1960; Gos. nauch.-tekh. izd-vo mashinostr. lit-ry, Moscow, 1962).

  8. M. Martin, W. Mader, and E. Fromm, Thin Solid Films 250, 61 (1994).

    Article  Google Scholar 

  9. N. Cabrera and N. F. Mott., Rep. Prog. Phys. 12, 163 (1949).

    Article  Google Scholar 

  10. A. E. Jenkins, J. Inst. Metals 84 (10), 1 (1955).

    Google Scholar 

  11. V. A. Matveev, N. K. Pleshanov, O. V. Gerashchenko, and V. Yu. Bairamukov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (5), 991 (2014).

    Article  Google Scholar 

  12. J. Ogava, Jpn. Inst. Met 21, 410 (1956).

    Google Scholar 

  13. I. I. Kornilov, Khim. Nauka Prom-st. 3 (6), 803 (1958).

    Google Scholar 

  14. M. V. Mal’tsev, Z. I. Kornilova, and N. M. Fedorchuk, Oxidation of Titanium Alloys (Nauka, Moscow, 1985) [In Russian].

    Google Scholar 

  15. N. K. Pleshanov, J. Phys.: Conf. Ser 528, 012023 (2014).

    Google Scholar 

  16. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res. A 853, 61 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of the Russian Federation (Agreement no. 14.607.21.0194 on 26.09.17, project RFMEFI60717X0194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Matveev.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, V.A., Pleshanov, N.K. A Study of the Kinetics of Oxidation of Titanium Nanolayers and Their Application in Neutron Optical Devices. J. Surf. Investig. 13, 469–477 (2019). https://doi.org/10.1134/S1027451019030285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019030285

Keywords:

Navigation