Skip to main content
Log in

Abstract

Experimental and theoretical studies of the processes of mesoporous-silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-gap semiconductors are performed. Analytical expressions for the effective diffusion factor and diffusion length of carbon atoms in a porous system are obtained. The proposed model takes into account the processes of Knudsen diffusion, coagulation and the overgrowth of pores during the formation of a silicon-carbide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Zielinski, M. Portail, S. Roy, et al., Mater. Sci. Eng. 165, 9 (2009). https://doi.org/10.1016/j.mseb.2009.02.019

    Article  Google Scholar 

  2. Y. Cordier, M. Portail, S. Chenot, O. Tottereau, et al., J. Cryst. Growth 310, 4417 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.063

    Article  Google Scholar 

  3. Y. H. Zhu, J. C. Zhang, Z. T. Chen, and T. Egawa, J. Appl. Phys. 106, 124506 (2009). https://doi.org/10.1063/1.3273311

    Article  Google Scholar 

  4. R. F. Davis, T. Gehrke, K. J. Linthicum, et al., J. Cryst. Growth 225, 134 (2001).

    Article  Google Scholar 

  5. V. Cimalla, J. Pezoldt, and O. Ambacher, J. Phys. D: Appl. Phys. 40, 6386 (2007).

    Article  Google Scholar 

  6. S. Kersulis and V. Mitin, Semicond. Sci. Technol. 10, 653 (1995). https://doi.org/10.1088/0268-w1242/10/5/014

    Article  Google Scholar 

  7. P. A. Maksym, Semicond. Sci. Technol., No. 3, 594 (1998).

  8. N. I. Kargin, A. O. Sultanov, A. V. Bondarenko, et al., Russ. Microelectron. 43 (8), 531 (2014). https://doi.org/10.1134/S106373971408006X

    Article  Google Scholar 

  9. H. Suzie, MSc Thesis (2006).

  10. M. Galinsky and U. Senechal, Modell. Simul. Eng. 2014, 109036 (2014).

    Google Scholar 

  11. J. Crank, The Mathematics of Diffusion (Oxford Univ. Press, Oxford, 1975), p. 266.

    Google Scholar 

  12. P. Elia, E. Nativ-Roth, Y. Zeiri, and Z. Porat, Microporous Mesoporous Mater. 225, 465 (2016).

    Article  Google Scholar 

  13. S. E. Albo, L. J. Broadbelt, and R. Q. Snurr, AIChE J. 52 (11), 3679 (2006). https://doi.org/10.1002/aic.10998

    Article  Google Scholar 

  14. R. M. A. Roque-Malherbe, Adsorption and Diffusion in Nanoporous Materials (CRC Press, Boca Raton, FL, 2007).

    Book  Google Scholar 

  15. Y. S. Nagornov, J. Exp. Theor. Phys. (JETP) 121 (6), 1042 (2015).

    Article  Google Scholar 

  16. B. E. Deal and A. S. Grove, J. Appl. Phys. 36 (12), 3770 (1965).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using equipment of the Center for Collective Use of the National Research Nuclear University MEPhI “Heterostructure Microwave Electronics and Physics of Wide-Gap Semiconductors”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sultanov.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.S., Kargin, N.I., Ryndya, S.M. et al. Study of the Processes of Mesoporous-Silicon Carbonization. J. Surf. Investig. 13, 280–284 (2019). https://doi.org/10.1134/S1027451019020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020083

Keywords:

Navigation